Cryptanalysis of RSA Variants with Modified Euler Quotient

Mengce Zheng ${ }^{1}$ Noboru Kunihiro ${ }^{2}$ Honggang Hu ${ }^{1}$

${ }^{1}$ University of Science and Technology of China, China
${ }^{2}$ The University of Tokyo, Japan

$$
\text { May 7, } 2018
$$

Outline

(1) Introduction

- Background
- Main Problem
- Lattice-Based Method
(2) Attacks
- Our Results
- Small Private Key Attack
- Multiple Private Keys Attack
- Partial Key Exposure Attack
(3) Conclusions

RSA and Its Variants

The standard RSA cryptosystem.

- $N=p q$ with two distinct prime factors of the same bit-size.
- Public and private keys (e, d) satisfy $e d \equiv 1 \bmod \varphi(N)$.
- Euler's totient function $\varphi(N)=(p-1)(q-1)$.
- Encryption is $C=M^{e} \bmod N$ and decryption is $C^{d} \bmod N$.

RSA and Its Variants

The standard RSA cryptosystem.

- $N=p q$ with two distinct prime factors of the same bit-size.
- Public and private keys (e, d) satisfy $e d \equiv 1 \bmod \varphi(N)$.
- Euler's totient function $\varphi(N)=(p-1)(q-1)$.
- Encryption is $C=M^{e} \bmod N$ and decryption is $C^{d} \bmod N$.

The RSA variants with modified Euler quotient.

- $N=p q$ with two distinct prime factors of the same bit-size.
- Euler quotient is modified as $\omega(N)=\left(p^{2}-1\right)\left(q^{2}-1\right)$.
- Key pair (e, d) satisfy $e d \equiv 1 \bmod \omega(N)$.

Related Schemes

Three RSA-type variants with modified Euler quotient.

- One is based on singular cubic curves with $y^{2} \equiv x^{3}+b x^{2}(\bmod N)$.
- One is based on the field of Gaussian integers.
- One is based on quadratic field quotients using Lucas sequence.

Related Schemes

Three RSA-type variants with modified Euler quotient.

- One is based on singular cubic curves with $y^{2} \equiv x^{3}+b x^{2}(\bmod N)$.
- One is based on the field of Gaussian integers.
- One is based on quadratic field quotients using Lucas sequence.

Common requirement in the key generation phase.

- RSA modulus $N=p q$ with the same bit-size p and q.
- Public key e satisfies $\operatorname{gcd}\left(e,\left(p^{2}-1\right)\left(q^{2}-1\right)\right)=1$.
- Private key is $d \equiv e^{-1}\left(\bmod \left(p^{2}-1\right)\left(q^{2}-1\right)\right)$.

Key-Related Attacks

Small private key attack for $d \approx N^{\delta}$ and $e \approx N^{\alpha}$.

- Boneh-Durfee attack on standard RSA shows $\delta<0.292$ for $\alpha \approx 1$.
- This type attack on target RSA variants is $\delta<2-\sqrt{\alpha}$ for $\alpha \geq 1$.

Key-Related Attacks

Small private key attack for $d \approx N^{\delta}$ and $e \approx N^{\alpha}$.

- Boneh-Durfee attack on standard RSA shows $\delta<0.292$ for $\alpha \approx 1$.
- This type attack on target RSA variants is $\delta<2-\sqrt{\alpha}$ for $\alpha \geq 1$.

Multiple private keys attack for $\alpha \approx 1$ with n many keys.

- Takayasu-Kunihiro attack on standard RSA shows $\delta<1-\sqrt{\frac{2}{3 n+1}}$.
- This type attack on target RSA variants has not been analyzed.

Key-Related Attacks

Small private key attack for $d \approx N^{\delta}$ and $e \approx N^{\alpha}$.

- Boneh-Durfee attack on standard RSA shows $\delta<0.292$ for $\alpha \approx 1$.
- This type attack on target RSA variants is $\delta<2-\sqrt{\alpha}$ for $\alpha \geq 1$.

Multiple private keys attack for $\alpha \approx 1$ with n many keys.

- Takayasu-Kunihiro attack on standard RSA shows $\delta<1-\sqrt{\frac{2}{3 n+1}}$.
- This type attack on target RSA variants has not been analyzed.

Partial key exposure attack with known leakage of private key.

- This type attack on target RSA variants has not been analyzed.

Lattice-Based Method

Recover small roots of modular equations by lattice reduction algorithm.
(1) Construct shift polynomials sharing the common roots modulo R;
(2) Transform coefficient vectors into a lattice basis matrix B;
(3) Calculate short vectors from w-dimensional lattice \mathcal{L};
(4) Transform lattice vectors into integer equations;
(5) Extract the desired roots of equations over the integers.

A rough condition for extracting the small roots.

$$
\operatorname{det}(\mathcal{L})<R^{w} \Rightarrow|\operatorname{det}(B)|<R^{w}
$$

Our Results

Small private key attack
Let $N=p q$ with two prime factors p, q of the same bit-size. Let $e \approx N^{\alpha}, d \approx N^{\delta}$ be the keys satisfying $e d \equiv 1\left(\bmod \left(p^{2}-1\right)\left(q^{2}-1\right)\right)$. Then N can be efficiently factored if

$$
\delta<2-\sqrt{\alpha} \quad \text { for } \quad 1 \leq \alpha<4
$$

Our Results

Small private key attack
Let $N=p q$ with two prime factors p, q of the same bit-size. Let $e \approx N^{\alpha}, d \approx N^{\delta}$ be the keys satisfying $e d \equiv 1\left(\bmod \left(p^{2}-1\right)\left(q^{2}-1\right)\right)$. Then N can be efficiently factored if

$$
\delta<2-\sqrt{\alpha} \quad \text { for } \quad 1 \leq \alpha<4
$$

Multiple private keys attack
Given $e_{i} d_{i} \equiv 1\left(\bmod \left(p^{2}-1\right)\left(q^{2}-1\right)\right)$ for $1 \leq i \leq n$. Then N can be efficiently factored if

$$
\delta<2-\sqrt{\frac{4 \alpha}{3 n+1}} \quad \text { for } \quad \frac{4}{3 n+1}<\alpha<3 n+1
$$

Our Results

Partial key exposure attack

Let $N=p q$ with two prime factors p, q of the same bit-size. Let $e \approx N^{\alpha}, d \approx N^{\delta}$ be the keys satisfying $e d \equiv 1\left(\bmod \left(p^{2}-1\right)\left(q^{2}-1\right)\right)$. Given \tilde{d} with known MSBs $d_{M}=N^{\gamma_{M}}$, LSBs $d_{L}=N^{\gamma_{L}}$ and unknown $\hat{d}=N^{\delta-\gamma}\left(\right.$ for $\left.\gamma=\gamma_{M}+\gamma_{L}\right)$ such that $d=d_{M} M+\hat{d} L+d_{L}$ for $M:=2^{\left(\delta-\gamma_{M}\right) \log _{2} N}$ and $L:=2^{\gamma_{L} \log _{2} N}$. Then N can be efficiently factored if

$$
\delta<\frac{3 \gamma+7-2 \sqrt{3 \alpha+3 \gamma+1}}{3}
$$

Small Private Key Attack - (1)

The crucial equation derived from $e d \equiv 1 \bmod \omega(N)$ for $N=p q$.

$$
\begin{aligned}
& e d \\
& \Rightarrow \quad e d=k\left(p^{2}-1\right)\left(q^{2}-1\right)+1 \\
& \Rightarrow \quad e d\left((N+1)^{2}-(p+q)^{2}\right)+1
\end{aligned}
$$

Small Private Key Attack - (1)

The crucial equation derived from $e d \equiv 1 \bmod \omega(N)$ for $N=p q$.

$$
\begin{aligned}
\quad e d & =k\left(p^{2}-1\right)\left(q^{2}-1\right)+1 \\
\Rightarrow \quad e d & =k\left((N+1)^{2}-(p+q)^{2}\right)+1
\end{aligned}
$$

Find solution of the following modular equation.

$$
x(y+A)+1 \equiv 0 \quad(\bmod e)
$$

- Known: $A=(N+1)^{2}$ and e.
- Small roots: $x=k$ and $y=-(p+q)^{2}$.

Small Private Key Attack - (2)

Apply the linearization technique to the crucial modular equation.

$$
A x+z \equiv 0 \quad(\bmod e) \quad \text { for } \quad z:=x y+1
$$

Small Private Key Attack - (2)

Apply the linearization technique to the crucial modular equation.

$$
A x+z \equiv 0 \quad(\bmod e) \quad \text { for } \quad z:=x y+1
$$

Define shift polynomials $g_{[i, j, k]}(x, y, z)$ for $f(x, y, z):=A x+z$.

$$
g_{[i, j, k]}(x, y, z):=x^{i} y^{j} f^{k}(x, y, z) e^{s-k}=x^{i} y^{j}(A x+z)^{k} e^{s-k}
$$

- s is a fixed positive integer and $i, j, k \in \mathbb{N}$.
- $R=e^{s}$.

Small Private Key Attack - (3)

The set of shift polynomials $\mathcal{G} \cup \mathcal{H}$ defined over index sets $\mathcal{I}_{\mathcal{G}}$ and $\mathcal{I}_{\mathcal{H}}$.

$$
\begin{aligned}
\mathcal{I}_{\mathcal{G}} & :=\{(i, j, k): j=0 ; i=0, \ldots, s ; k=0, \ldots, s-i\} \\
\mathcal{I}_{\mathcal{H}} & :=\{(i, j, k): i=0 ; k=0, \ldots, s ; j=1, \ldots, \tau k\}
\end{aligned}
$$

- An optimizing parameter $0 \leq \tau \leq 1$ to be determined later.

Small Private Key Attack - (3)

The set of shift polynomials $\mathcal{G} \cup \mathcal{H}$ defined over index sets $\mathcal{I}_{\mathcal{G}}$ and $\mathcal{I}_{\mathcal{H}}$.

$$
\begin{aligned}
\mathcal{I}_{\mathcal{G}} & :=\{(i, j, k): j=0 ; i=0, \ldots, s ; k=0, \ldots, s-i\} \\
\mathcal{I}_{\mathcal{H}} & :=\{(i, j, k): i=0 ; k=0, \ldots, s ; j=1, \ldots, \tau k\}
\end{aligned}
$$

- An optimizing parameter $0 \leq \tau \leq 1$ to be determined later.

The coefficient vectors of $g_{[i, j, k]}(x X, y Y, z Z)$ generate the basis matrix.

- X, Y and Z denote the upper bounds on the roots (x, y, z).
- $X=N^{\alpha+\delta-2}, Y=N$ and $Z=N^{\alpha+\delta-1}$.

Small Private Key Attack - (4)

Derive final condition and set $\tau=1-\delta$ as the optimizing parameter.

$$
\begin{aligned}
& \Rightarrow \quad \tau^{2}+(2 \delta-2) \tau+\alpha+2 \delta-3<0 \\
& \Rightarrow \quad \delta^{2}-4 \delta-\alpha+4>0
\end{aligned}
$$

Small Private Key Attack - (4)

Derive final condition and set $\tau=1-\delta$ as the optimizing parameter.

$$
\begin{aligned}
& \Rightarrow \quad \tau^{2}+(2 \delta-2) \tau+\alpha+2 \delta-3<0 \\
& \Rightarrow \quad \delta^{2}-4 \delta-\alpha+4>0
\end{aligned}
$$

Consider the applicable range of α with $0 \leq \tau \leq 1$ and $\alpha+\delta \geq 2$.

$$
\delta<2-\sqrt{\alpha} \quad \text { for } \quad 1 \leq \alpha<4
$$

Multiple Private Keys Attack - (1)

Given $e_{i} \approx N^{\alpha}, d_{i} \approx N^{\delta}$ with $e_{i} d_{i} \equiv 1(\bmod \omega(N))$ for $1 \leq i \leq n$.

$$
\left\{\begin{aligned}
& f_{1}\left(x_{1}, y\right):=x_{1}(y+A)+1 \equiv 0\left(\bmod e_{1}\right) \\
& f_{2}\left(x_{2}, y\right):=x_{2}(y+A)+1 \equiv 0 \quad\left(\bmod e_{2}\right) \\
& \vdots \\
& f_{n}\left(x_{n}, y\right):=x_{n}(y+A)+1 \equiv 0 \quad\left(\bmod e_{n}\right)
\end{aligned}\right.
$$

- Known: $A:=(N+1)^{2}$ and e_{i} for $1 \leq i \leq n$.
- Small roots: $\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)=\left(k_{1}, k_{2}, \ldots, k_{n},-(p+q)^{2}\right)$.

Multiple Private Keys Attack - (2)

Define underlying shift polynomials for each modular equation.

$$
g_{i_{k}, j_{k}}^{(k)}\left(x_{k}, y\right):=x_{k}^{i_{k}-j_{k}} f_{k}^{j_{k}}\left(x_{k}, y\right) e_{k}^{s-j_{k}}
$$

- $0 \leq j_{k} \leq i_{k} \leq s$ and $i_{k}, j_{k} \in \mathbb{N}$ for $1 \leq k \leq n$.

Multiple Private Keys Attack - (2)

Define underlying shift polynomials for each modular equation.

$$
g_{i_{k}, j_{k}}^{(k)}\left(x_{k}, y\right):=x_{k}^{i_{k}-j_{k}} f_{k}^{j_{k}}\left(x_{k}, y\right) e_{k}^{s-j_{k}}
$$

- $0 \leq j_{k} \leq i_{k} \leq s$ and $i_{k}, j_{k} \in \mathbb{N}$ for $1 \leq k \leq n$.

Define shift polynomials by Minkowski sum based construction.

$$
g_{i_{1}, \ldots, i_{n}, j}\left(x_{1}, \ldots, x_{n}, y\right):=\sum_{j_{1}+\cdots+j_{n}=j} a_{j_{1}, \ldots, j_{n}} g_{i_{1}, j_{1}}^{(1)} g_{i_{2}, j_{2}}^{(2)} \cdots g_{i_{n}, j_{n}}^{(n)}
$$

- $R=\left(e_{1} \cdots e_{n}\right)^{s}$.

Multiple Private Keys Attack - (3)

Chosen $a_{j_{1}, \ldots, j_{n}}$ leads to each diagonal entry of basis matrix.

$$
X_{1}^{i_{1}} \cdots X_{n}^{i_{n}} Y^{j} e_{1}^{s-i_{1}} \cdots e_{n}^{s-i_{n}}
$$

- $X_{1}=\cdots=X_{n}=N^{\alpha+\delta-2}$ and $Y=N$.

Multiple Private Keys Attack - (3)

Chosen $a_{j_{1}, \ldots, j_{n}}$ leads to each diagonal entry of basis matrix.

$$
X_{1}^{i_{1}} \cdots X_{n}^{i_{n}} Y^{j} e_{1}^{s-i_{1}} \cdots e_{n}^{s-i_{n}}
$$

- $X_{1}=\cdots=X_{n}=N^{\alpha+\delta-2}$ and $Y=N$.

The shift polynomials are defined over the index set \mathcal{I}.

$$
\mathcal{I}:=\left\{\left(i_{1}, \ldots, i_{n}, j\right): 0 \leq i_{1}, i_{2}, \ldots, i_{n} \leq s ; 0 \leq j \leq(2-\delta) \sum_{k=1}^{n} i_{k}\right\}
$$

- To choose as many helpful polynomials as possible.

Multiple Private Keys Attack - (4)

Derive final condition for multiple private keys attack case.

$$
\begin{aligned}
& \Rightarrow \quad-(3 n+1)(2-\delta)^{2}+4 \alpha<0 \\
& \Rightarrow \quad \delta<2-\sqrt{\frac{4 \alpha}{3 n+1}}
\end{aligned}
$$

Multiple Private Keys Attack - (4)

Derive final condition for multiple private keys attack case.

$$
\begin{aligned}
& \Rightarrow \quad-(3 n+1)(2-\delta)^{2}+4 \alpha<0 \\
& \Rightarrow \quad \delta<2-\sqrt{\frac{4 \alpha}{3 n+1}}
\end{aligned}
$$

Consider the applicable range of α with $\delta>0$ and $\alpha+\delta>2$.

$$
\frac{4}{3 n+1}<\alpha<3 n+1
$$

Partial Key Exposure Attack - (1)

Given N and $e \approx N^{\alpha}$ and a known approximation \tilde{d} of $d \approx N^{\delta}$.

$$
d=\tilde{d}+\hat{d} L=d_{M} M+\hat{d} L+d_{L}
$$

- $M:=2^{\left(\delta-\gamma_{M}\right) \log _{2} N}$ and $L:=2^{\gamma_{L} \log _{2} N}$.
- $|\hat{d}|<N^{\delta-\gamma}$ for $\gamma:=\gamma_{M}+\gamma_{L}$.

Partial Key Exposure Attack - (1)

Given N and $e \approx N^{\alpha}$ and a known approximation \tilde{d} of $d \approx N^{\delta}$.

$$
d=\tilde{d}+\hat{d} L=d_{M} M+\hat{d} L+d_{L}
$$

- $M:=2^{\left(\delta-\gamma_{M}\right) \log _{2} N}$ and $L:=2^{\gamma_{L} \log _{2} N}$.
- $|\hat{d}|<N^{\delta-\gamma}$ for $\gamma:=\gamma_{M}+\gamma_{L}$.

Focus on the following integer equation.

$$
f(x, y, z):=1-e \tilde{d}+e L x+y\left((N+1)^{2}+z\right)
$$

- Small roots: $x=-\hat{d}, y=k$ and $z=-(p+q)^{2}$.

Partial Key Exposure Attack - (2)

Apply Jochemsz-May strategy to solve integer equations.

- Set a suitable integer $R:=W X^{s-1} Y^{s-1} Z^{s-1+\tau s}$ as the modulus.
- $X=N^{\delta-\gamma}, Y=N^{\alpha+\delta-2}, Z=N$ and $W=N^{\alpha+\delta}$.
- A fixed positive integer s and an optimizing parameter $\tau \geq 0$.
- $f^{\prime}(x, y, z):=(1-e \tilde{d})^{-1} f(x, y, z)(\bmod R)$.

Partial Key Exposure Attack - (2)

Apply Jochemsz-May strategy to solve integer equations.

- Set a suitable integer $R:=W X^{s-1} Y^{s-1} Z^{s-1+\tau s}$ as the modulus.
- $X=N^{\delta-\gamma}, Y=N^{\alpha+\delta-2}, Z=N$ and $W=N^{\alpha+\delta}$.
- A fixed positive integer s and an optimizing parameter $\tau \geq 0$.
- $f^{\prime}(x, y, z):=(1-e \tilde{d})^{-1} f(x, y, z)(\bmod R)$.

The shift polynomials $g_{[i, j, k]}(x, y, z)$ are defined as follows.

$$
\begin{aligned}
& g_{[i, j, k]}^{\mathcal{G}}(x, y, z):=x^{i} y^{j} z^{k} f^{\prime}(x, y, z) X^{s-1-i} Y^{s-1-j} Z^{s-1+\tau s-k} \\
& g_{[i, j, k]}^{\mathcal{H}}(x, y, z):=x^{i} y^{j} z^{k} R
\end{aligned}
$$

- An optimizing parameter $\tau \geq 0$ and $i, j, k \in \mathbb{N}$.

Partial Key Exposure Attack - (3)

The set of shift polynomials by $\mathcal{G} \cup \mathcal{H}$.

$$
\begin{aligned}
\mathcal{G} & :=\left\{g_{[i, j, k]}^{\mathcal{G}}(x, y, z):(i, j, k) \in \mathcal{I}_{\mathcal{G}}\right\} \\
\mathcal{H} & :=\left\{g_{[i, j, k]}^{\mathcal{H}}(x, y, z):(i, j, k) \in \mathcal{I}_{\mathcal{H}} \backslash \mathcal{I}_{\mathcal{G}}\right\}
\end{aligned}
$$

Two index sets $\mathcal{I}_{\mathcal{G}}$ and $\mathcal{I}_{\mathcal{H}}$ are defined as follows.

$$
\begin{aligned}
\mathcal{I}_{\mathcal{G}} & :=\{(i, j, k): i=0, \ldots, s-1 ; j=0, \ldots, s-1-i ; k=0, \ldots, j+\tau s\} \\
\mathcal{I}_{\mathcal{H}} & :=\{(i, j, k): i=0, \ldots, s ; j=0, \ldots, s-i ; k=0, \ldots, j+\tau s\}
\end{aligned}
$$

Partial Key Exposure Attack - (4)

Derive final condition and set $\tau=\frac{1+\gamma-\delta}{2}$ as the optimizing parameter.

$$
\begin{aligned}
& \Rightarrow \quad 3 \tau^{2}+(3 \delta-3 \gamma-3) \tau+\alpha+2 \delta-\gamma-3<0 \\
& \Rightarrow \quad \delta<\frac{3 \gamma+7-2 \sqrt{3 \alpha+3 \gamma+1}}{3}
\end{aligned}
$$

Conclusions

Key-related attacks on RSA variants with modified Euler quotient $\omega(N)$.

- Small private key attack with a precise applicable range of α.
- Multiple private keys attack that extends to n many keys.
- Partial key exposure attack is analyzed for the first time.

Conclusions

Key-related attacks on RSA variants with modified Euler quotient $\omega(N)$.

- Small private key attack with a precise applicable range of α.
- Multiple private keys attack that extends to n many keys.
- Partial key exposure attack is analyzed for the first time.

Further improvement and combined scenario remain as future work.

- To improve for given only the most or the least significant bits.
- To analyse partial key exposure attack with multiple key pairs.

Thank You!

