Implicit Related-Key Factorization Problem on the RSA Cryptosystem

Mengce Zheng Honggang Hu

University of Science and Technology of China

December 5, 2019

CANS 2019

Implicit Related-Key Factorization Problem on the RSA Cryptosystem

Outline

1. Introduction

- Background
- Research Problem
- Lattice-Based Method

2. Implicit Related-Key Factorization Attacks

- Given Two Instances
- Given More Instances
- Experimental Results

3. Conclusion

Background Research Problem Lattice-Based Method

Outline

1. Introduction

- Background
- Research Problem
- Lattice-Based Method
- 2. Implicit Related-Key Factorization Attacks
 - Given Two Instances
 - Given More Instances
 - Experimental Results

3. Conclusion

∃ >

The RSA Cryptosystem

One RSA instance consists of four parameters: N, e, d and $\varphi(N)$

- N = pq with two large prime factors of the same bit-size
- Public and private keys (e,d) satisfy $ed\equiv 1 \ {\rm mod} \ \varphi(N)$
- Euler's totient function $\varphi(N)=(p-1)(q-1)$
- Encryption is $c = m^e \mod N$ and decryption is $c^d \mod N$

Key equation of the RSA cryptosystem: $ed \equiv 1 \mod \varphi(N)$

- ed = k(N + 1 p q) + 1 for an unknown positive integer k
- Many attacks have been proposed to solve RSA key equation
- Using small private key is always considered in attacks

Two Attacks on RSA

Partial key exposure attack

- Given a small fraction of the private key bits
- Eg: $d = \bar{d} + d'$ with known MSBs \bar{d} and unknown LSBs d'
- $\bullet\,$ The goal is to reconstruct the entire private key d

Implicit factorization problem

- Given an oracle providing implicit information about prime factors
- Eg: $N_1 = p_1q_1$ and $N_2 = p_2q_2$ with p_1, p_2 sharing some LSBs
- The goal is to find q_1, q_2 and then factor N_1, N_2

Our Research Problem

What if an attacker knows implicit information about private keys

- Given amounts of shared MSBs and LSBs of implicitly related keys
- Eg: $d_2 d_1 = d_{21}D$ with known D and unknown middle bits d_{21}
- The goal is to factor RSA moduli using given implicit relation

We study this new attack scenario mainly from theoretical interests

- Disclose the vulnerability of RSA under weaker hypothesis
- Extend attacks and enrich cryptanalyses in the literature
- Private keys may be generated with imperfect randomness

Our Research Problem

Implicit Related-Key Factorization Problem

Let $(N_1, e_1, d_1), \ldots, (N_n, e_n, d_n)$ be *n* distinct RSA key pairs, where N_1, \ldots, N_n are of the same bit-size and the prime factors are also all of the same bit-size. Given the implicit information that certain portions of the bit pattern in private keys d_1, \ldots, d_n are common, under what condition is it possible to efficiently factor RSA moduli.

We consider the full size case for $e_i \approx N$. (N denotes an integer of the same bit-size as N_i for simplicity.) Assume $d_i \approx N^{\delta}$ satisfy the implicit relation $d_j = d_i + d_{ji}D$ for $1 \leq i < j \leq n$, where D denotes the bit-length of shared LSBs and d_{ji} denotes the difference between every two unknown middle bits with $|D| \approx N^{\gamma}$ and $|d_{ji}| \approx N^{\beta}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Background Research Problem Lattice-Based Method

Lattice and Lattice Reduction

Lattice \mathcal{L} is spanned by linearly independent vectors $\vec{b}_1, \ldots, \vec{b}_n \in \mathbb{R}^n$

- $\mathcal{L}(\vec{b}_1,\ldots,\vec{b}_n) = \{z_1\vec{b}_1 + \cdots + z_n\vec{b}_n : z_i \in \mathbb{Z}\}$
- $\bullet\,$ The basis vectors generate a lattice basis matrix B
- The lattice determinant is $det(\mathcal{L}) = |det(B)|$ for full-rank B

Lattice reduction algorithm is used for finding approximately short vectors

- Eg: the famous LLL algorithm and its improved variants
- The running time is polynomial in n and $\log_2 \max_{1 \le i,j \le n} |B_{ij}|$
- Use Gaussian Heuristic to estimate the size of reduced vectors
- Application in cryptanalysis of RSA and other cryptosystems

Lattice-Based Technique

Find small roots of modular polynomial equations

- 1. Modular equation derived from known and unknown parameters
- 2. Construct shift polynomials sharing the common root modulo $$\cal R$$
- 3. Transform coefficient vectors into a lattice basis matrix ${\boldsymbol B}$
- 4. Reduce m-dimensional lattice $\mathcal{L}(B)$ using the LLL algorithm
- 5. Transform reduced short vectors into integer equations
- 6. Extract the common root of equations over the integers

Crucial Condition

$$\det(\mathcal{L}) < R^m$$

CANS 2019

Introduction Given Two Instances Implicit Related-Key Factorization Attacks Conclusion Experimental Result

Outline

1. Introduction

- Background
- Research Problem
- Lattice-Based Method

2. Implicit Related-Key Factorization Attacks

- Given Two Instances
- Given More Instances
- Experimental Results

3. Conclusion

CANS 2019

Concrete Attack Scenario

Given (N_1,e_1,d_1) and (N_2,e_2,d_2) with implicitly related keys d_1,d_2

- N_1,N_2 are of the same bit-size denoted by $\log_2 N$
- $e_1 \approx e_2 \approx N$ are approximately of the same bit-size of moduli
- $d_1 \approx d_2 \approx N^{\delta}$ satisfy $d_2 = d_1 + d_{21}D$ for $|d_{21}| \approx N^{\beta}$ and $|D| \approx N^{\gamma}$

Perform the splitting technique based on Gaussian Heuristic

- Construct a two-dimensional lattice generated by $\begin{vmatrix} a_0 & e_1 \\ 0 & N_1 \end{vmatrix}$
- $d_1 = a_1c_1 + a_2c_2$ for known a_1, a_2 and unknown c_1, c_2
- $|a_1| \approx |a_2| \approx N^{\frac{1}{4}}$ and $|c_1| \approx |c_2| \approx N^{\delta \frac{1}{4}}$

Attack – Modular Equation

Combine $d_1 = a_1c_1 + a_2c_2$ with given implicit relation $d_2 = d_1 + d_{21}D$

- $d_2 = a_1c_1 + a_2c_2 + d_{21}D$ for unknown variables c_1, c_2, d_{21}
- Substitute d_2 in key equation $e_2d_2 = k_2(N_2 + 1 p_2 q_2) + 1$
- $e_2(a_1c_1 + a_2c_2 + d_{21}D) k_2(N_2 + 1 p_2 q_2) 1 = 0$

Find small roots of modular equation f in four variables

- $f(x, y, z, w) := x(y N_2 1) + e_2 a_1 z + e_2 Dw 1 \mod e_2 a_2$
- Unknown variables: $x = k_2$, $y = p_2 + q_2$, $z = c_1$ and $w = d_{21}$
- Apply the linearization technique to let u := xy 1
- $\bar{f}(x, z, w, u) := u (N_2 + 1)x + e_2 a_1 z + e_2 Dw \mod e_2 a_2$

イロト イポト イヨト イヨト

Attack – Shift Polynomials

Define shift polynomials $g_{[i,j,k,l_1,l_2]}$ for $s \in \mathbb{Z}_+$ and $i,j,k,l_1,l_2 \in \mathbb{N}$

$$g_{[i,j,k,l_1,l_2]}(x,y,z,w,u):=x^iy^jz^{l_1}w^{l_2}\bar{f}^k(x,z,w,u)E^{s-k} \text{ for } E=e_2a_2$$

Construct the set of shift polynomials using $\mathcal{G}:=\mathcal{G}_1\cup\mathcal{G}_2$ for $0\leq\tau\leq 1$

$$\begin{aligned} \mathcal{G}_1 &:= \{g_{[i,0,k,l_1,l_2]}(x,y,z,w,u) : k = 0, \dots, s; i = 0, \dots, s - k; \\ l_1 &= 0, \dots, s - k - i; l_2 = 0, \dots, s - k - i - l_1. \} \\ \mathcal{G}_2 &:= \{g_{[0,j,k,l_1-l_2,l_2-k]}(x,y,z,w,u) : l_1 = 0, \dots, s; j = 1, \dots, \tau l_1; \\ l_2 &= 0, \dots, l_1; k = 0, \dots, l_2. \} \end{aligned}$$

The common root is $(k_2, p_2 + q_2, c_1, d_{21}, k_2(p_2 + q_2) - 1)$ modulo E^s

Given Two Instances Given More Instances Experimental Results

Attack – Lattice Construction

Coefficient vectors of $g_{[i,j,k,l_1,l_2]}(xX, yY, zZ, wW, uU)$ generate B

- X, Y, Z, W and U denote upper bounds on unknown variables
- The lattice basis matrix B is square and lower triangular

Eg: Lattice basis matrix for s = 1 and $\tau = 1$ with $C := -(N_2 + 1)$

YZ			
YZ			
YZ			
YZ			
EW	r		
	EYW		
$e_2 DW$	V	U	
VZ	$e_2 DYW$	CU	YU
	YZ	-	• <u>2</u> = ···

Given Two Instances Given More Instances Experimental Results

Attack – Lattice Reduction

 $\det(\mathcal{L})$ is the product of diagonal entries in the lattice basis matrix B

- Diagonal entries for polynomials in \mathcal{G}_1 is $X^i Z^{l_1} W^{l_2} U^k E^{s-k}$
- Diagonal entries for polynomials in \mathcal{G}_2 is $Y^j Z^{l_1-l_2} W^{l_2-k} U^k E^{s-k}$

$$\det(\mathcal{L}) = \left(\prod_{k=0}^{s} \prod_{i=0}^{s-k} \prod_{l_1=0}^{s-k-i} \prod_{l_2=0}^{s-k-i-l_1} X^i Z^{l_1} W^{l_2} U^k E^{s-k}\right)$$
$$\times \left(\prod_{l_1=0}^{s} \prod_{j=1}^{\tau l_1} \prod_{l_2=0}^{l_1} \prod_{k=0}^{l_2} Y^j Z^{l_1-l_2} W^{l_2-k} U^k E^{s-k}\right)$$
$$= X^{s_x} Y^{s_y} Z^{s_z} W^{s_w} U^{s_u} E^{s_E}$$

Given Two Instances Given More Instances Experimental Results

Attack – Lattice Reduction

Figure out the lattice dimension m and omit the negligible terms

$$m = \sum_{k=0}^{s} \sum_{i=0}^{s-k} \sum_{l_1=0}^{s-k-i} \sum_{l_2=0}^{s-k-i-l_1} 1 + \sum_{l_1=0}^{s} \sum_{j=1}^{\tau l_1} \sum_{l_2=0}^{l_1} \sum_{k=0}^{l_2} 1 = \frac{1+3\tau}{24} s^4 + o(s^4)$$

Apply the crucial condition $det(\mathcal{L}) < R^m$ with $R = E^s$

$$X^{s_x} Y^{s_y} Z^{s_z} W^{s_w} U^{s_u} E^{s_E} < E^{\frac{1+3\tau}{24}s^5}$$

Figure out contributions of diagonal entries: $s_{x},\,s_{y},\,s_{z},\,s_{w},\,s_{u}$ and s_{E}

$$s_x = \frac{1}{120}s^5, \ s_y = \frac{\tau^2}{20}s^5, \ s_z = s_w = s_u = \frac{1+4\tau}{120}s^5, \ s_E = \frac{4+11\tau}{120}s^5$$

Given Two Instances Given More Instances Experimental Results

Attack – Condition Derivation

Figure out upper bounds on unknown variables: X, Y, Z, W, U and E

$$X = N^{\delta}, \ Y = N^{\frac{1}{2}}, \ Z = N^{\delta - \frac{1}{4}}, \ W = N^{\beta}, \ U = N^{\delta + \frac{1}{2}}, \ E = N^{\frac{5}{4}}$$

Substitute in simplified condition

$$X^{s_x}Y^{s_y}Z^{s_z}W^{s_w}U^{s_u}E^{s_E-\frac{1+3\tau}{24}s^5} < 1$$

 $\delta+3\tau^2+(1+4\tau)\left(\delta-\frac{1}{4}+\beta+\delta+\frac{1}{2}\right)+\frac{5}{4}\left(4+11\tau-5-15\tau\right)<0$

Obtain the inequality of δ with τ to be optimized later

$$\delta < \frac{(1-\beta)(1+4\tau) - 3\tau^2}{3+8\tau}$$

Given Two Instances Given More Instances Experimental Results

Attack – Result Illustration

Set $\tau = (\sqrt{177 - 96\beta} - 9)/24$ and obtain the final condition

$$\delta < \frac{25 - 16\beta - \sqrt{177 - 96\beta}}{32}$$

- 3 ▶

Given Two Instances Given More Instances Experimental Results

Main Result

Implicit Related-Key Factorization Attack

Let $N_1 = p_1q_1$ and $N_2 = p_2q_2$ be given two RSA moduli of the same bit-size, where p_1, q_1, p_2, q_2 are large primes of the same bit-size. Let e_1, d_1, e_2, d_2 be some integers satisfying $e_1d_1 \equiv 1 \mod (p_1 - 1)(q_1 - 1)$ and $e_2d_2 \equiv 1 \mod (p_2 - 1)(q_2 - 1)$ such that $e_1 \approx e_2 \approx N$ and $d_1 \approx d_2 \approx N^{\delta}$. Given the implicit information that $d_2 = d_1 + d_{21}D$ for $|d_{21}| \approx N^{\beta}$. Then N_1 and N_2 can be factored in polynomial time if

$$\delta < \frac{25 - 16\beta - \sqrt{177 - 96\beta}}{32}$$

CANS 2019

Given Two Instances Given More Instances Experimental Results

Concrete Attack Scenario

Perform the splitting technique using the following basis matrix

$$\begin{bmatrix} a_0 & 0 & \cdots & 0 & e_2 & \cdots & e_n \\ 0 & b_0 & \cdots & 0 & e_2 D & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b_0 & 0 & \cdots & e_n D \\ 0 & 0 & \cdots & 0 & N_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & N_n \end{bmatrix}$$

 d_1 is an integer linear combination of (2n-1) unknown variables

$$d_1 = a_1c_1 + a_2c_2 + \dots + a_{2n-1}c_{2n-1}$$

4 B K 4 B K

Main Result

Implicit Related-Key Factorization Attack

Let $N_i = p_i q_i$ for $1 \le i \le n$ be given RSA moduli of the same bit-size, where p_i and q_i are large primes of the same bit-size. Let e_i and d_i be some integers satisfying $e_i d_i \equiv 1 \mod (p_i - 1)(q_i - 1)$ such that $e_i \approx N$ and $d_i \approx N^{\delta}$. Given the implicit information that $d_j = d_i + d_{ji}D$ for $1 \le i < j \le n$ with $|d_{ji}| \approx N^{\beta}$. Then given RSA moduli can be factored in polynomial time (but exponential in n) if

$$\delta < \frac{1}{2} - \beta + \frac{2n^2 + n - 1 + 4n^2\beta}{4n^3} - \frac{\sqrt{(2n-1)(6n^3 + 3n^2 - 1 - 8n^2(n-1)\beta)}}{4n^3}.$$

Experimental Results

Randomly generate two RSA instances with implicitly related keys

- 1. Generate two 1024-bit RSA moduli N_1 and N_2
- 2. Generate implicit related-keys d_1 and d_2 according to β and γ
- 3. Compute respective public keys $e_1 \mbox{ and } e_2 \mbox{ from } N_1, d_1 \mbox{ and } N_2, d_2$

Table: Asymptotic bounds and experimental results for given two RSA instances

γ	β	δ_{∞}	δ_e	s	au	m	TL	TG
0.117	0.048	0.346	0.292	5	0.200	136	112.834	0.121
0.117	0.039	0.350	0.315	6	0.166	225	1933.569	0.151
0.043	0.058	0.342	0.295	5	0.200	136	140.853	0.122
0.034	0.063	0.340	0.296	6	0.166	225	1647.016	0.176
0.078	0.092	0.329	0.290	5	0.200	136	174.732	0.146
0.078	0.097	0.327	0.293	6	0.166	225	2336.019	0.162

Outline

1. Introduction

- Background
- Research Problem
- Lattice-Based Method

2. Implicit Related-Key Factorization Attacks

- Given Two Instances
- Given More Instances
- Experimental Results

3. Conclusion

Conclusion

Focus on a new problem concerning implicitly related keys

- Factor RSA moduli with the help of given implicit relation
- Apply lattice-based method for solving modular equations
- Propose lattice-based implicit related-key factorization attacks
- Verify the validity of our proposed attack by numerical experiments

Further improvements remain as future works

- More efficient lattice constructions
- Generic attacks for arbitrary public keys

THANK YOU FOR YOUR ATTENTION!

Q & A

CANS 2019

Implicit Related-Key Factorization Problem on the RSA Cryptosystem

25 / 25

∃ ► < ∃ ►