Implicit-Key Attack on the RSA Cryptosystem

Mengce Zheng Honggang Hu

University of Science and Technology of China

August 11, 2019

Implicit-Key Attack on the RSA Cryptosystem

Outline

Background

- Research Problem
- Lattice-Based Method

2 Proposed Attack

- Implicit-Key Attack
- Experimental Results

3 Conclusion

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Sac

The RSA Cryptosystem

Standard RSA instance consists of N , e , d , $\varphi(N)$ parameters

- N = pq with two large prime factors of the same bit-size
- Public and private keys (e, d) satisfy $ed \equiv 1 \mod \varphi(N)$
- Euler's totient function $\varphi(N) = (p-1)(q-1)$
- Encryption is $c = m^e \mod N$ and decryption is $c^d \mod N$

The key equation of the RSA cryptosystem

• ed = k(N + 1 - p - q) + 1 for a positive integer k

• Many attacks have been proposed to solve the key equation

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Existing Attacks

Partial key exposure attack @ ASIACRYPT 1998

- Given a small fraction of the private key bits
- $d = \bar{d} + d_0$ with known MSBs \bar{d} and unknown LSBs d_0
- ${\ensuremath{\, \bullet }}$ The goal is to reconstruct the entire private key d

Implicit factorization problem @ PKC 2009

- Given an oracle providing implicit information about the primes
- $N_1 = p_1q_1$ and $N_2 = p_2q_2$ with p_1, p_2 sharing some LSBs
- The goal is to find q_1, q_2 and then factor N_1, N_2

ヘロト ヘ回ト ヘヨト ヘヨト

New Problem

Implicit information about the private keys

- (N_1, e_1, d_1) and (N_2, e_2, d_2) with N_1, N_2 of the same bit-size
- Given the amounts of shared (unknown) MSBs and LSBs of d_1, d_2
- The goal is to factor N_1 and N_2

Consider such combined case mainly from theoretical interest

- Disclose the vulnerability of RSA in weaker attack scenario
- Investigate how to further extend existing attacks
- RSA instances may be generated with imperfect randomness

Lattice-Based Method

Find roots of modular/integer equations by lattice reduction algorithm

- (1) Construct shift polynomials sharing the common root modulo ${\cal R}$
- ^{\bigcirc} Transform coefficient vectors into a lattice basis matrix B
- $\ensuremath{\mathfrak{3}}$ Calculate reduced basis vectors of a w-dimensional lattice $\mathcal L$
- ④ Transform derived lattice vectors into integer equations
- 5 Extract the common root of equations over the integers

The crucial condition for extracting the small roots of given equations

 $\det(\mathcal{L}) < R^w$

Attack Scenario

Given (N_1, e_1, d_1) and (N_2, e_2, d_2) with implicitly related keys d_1, d_2

N₁, N₂ are of the same bit-size denoted by log₂ N
e₁ = N^{α1}, e₂ = N^{α2} are of arbitrary bit-size
d₁, d₂ ≈ N^δ share β₁ log₂ N MSBs and β₂ log₂ N LSBs

Shared MSBs and LSBs $d_{
m MSB}, d_{
m LSB}$ and different middle bits $ar{d}_1, ar{d}_2$

- $d_1 = d_{\text{MSB}} 2^{(\delta \beta_1) \log_2 N} + \bar{d}_1 2^{\beta_2 \log_2 N} + d_{\text{LSB}}$
- $d_2 = d_{\text{MSB}} 2^{(\delta \beta_1) \log_2 N} + \bar{d}_2 2^{\beta_2 \log_2 N} + d_{\text{LSB}}$
- Implicit relation: $d_1 d_2 = (\bar{d}_1 \bar{d}_2)2^{\beta_2 \log_2 N} = (\bar{d}_1 \bar{d}_2)N^{\beta_2}$

Implicit-Key Attack – (1)

Apply the key equations and the implicit relation of d_1, d_2

•
$$e_1d_1 = k_1(N_1 + 1 - p_1 - q_1) + 1$$
 and $e_2d_2 = k_2(N_2 + 1 - p_2 - q_2) + 1$
• $e_2e_1d_1 - e_1e_2d_2 = e_1e_2(d_1 - d_2) = e_1e_2(\bar{d}_1 - \bar{d}_2)N^{\beta_2} = e_2k_1(N_1 + 1 - p_1 - q_1) + e_2 - e_1k_2(N_2 + 1 - p_2 - q_2) - e_1$

Find the root of the integer equation in five variables

- $f(x_1, x_2, x_3, x_4, x_5) = a_1x_1 + a_2x_2 + a_3x_3 + a_4x_2x_4 + a_5x_3x_5 + a_6$
- Known values: $a_1 = e_1 e_2 N^{\beta_2}$, $a_2 = e_2(N_1 + 1)$, $a_3 = -e_1(N_2 + 1)$, $a_4 = -e_2$, $a_5 = e_1$, and $a_6 = e_2 e_1$
- Unknown variables: $x_1 = \overline{d}_2 \overline{d}_1$, $x_2 = k_1$, $x_3 = k_2$, $x_4 = p_1 + q_1$, and $x_5 = p_2 + q_2$

Implicit-Key Attack – (2)

Figure out the upper bounds on unknown variables

•
$$X_1 = N^{\delta-\beta}$$
, $X_2 = N^{\alpha_1+\delta-1}$, $X_3 = N^{\alpha_2+\delta-1}$, $X_4 = X_5 = N^{1/2}$,
 $X_{\infty} = N^{\alpha+\delta}$ for $\alpha = \alpha_1 + \alpha_2$ and $\beta = \beta_1 + \beta_2$
• $R = X_{\infty}X_1^{s-1}X_2^{s-1}X_3^{s-1}X_4^{s-1+t}X_5^{s-1+t}$ for integers s and t

Define two monomial sets S and T for integers $s \ge 1$ and $t \ge 0$

$$S = \bigcup_{0 \le j_4, j_5 \le t} \left\{ x_1^{i_1} x_2^{i_2} x_3^{i_3} x_4^{i_4+j_4} x_5^{i_5+j_5} | x_1^{i_1} x_2^{i_2} x_3^{i_3} x_4^{i_4} x_5^{i_5} \text{ is a monomial of } f^{s-1} \right\}$$
$$T = \bigcup_{0 \le j_4, j_5 \le t} \left\{ x_1^{i_1} x_2^{i_2} x_3^{i_3} x_4^{i_4+j_4} x_5^{i_5+j_5} | x_1^{i_1} x_2^{i_2} x_3^{i_3} x_4^{i_4} x_5^{i_5} \text{ is a monomial of } f^s \right\}$$

SciSec 2019

<ロト <四ト < 回ト < 回ト

Sac

Implicit-Key Attack – (3)

Define the shift polynomials g and g' according to S and T

Coefficient vectors of $g(x_iX_i), g'(x_iX_i)$ generate a basis matrix B

- *B* is a square and triangular matrix
- $det(\mathcal{L}) = det(B)$ is the product of diagonal elements

10 / 15

Sac

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Implicit-Key Attack – (4)

Apply the crucial condition $det(\mathcal{L}) < R^w$ in lattice-based method

•
$$\prod_{j=1}^{5} X_j^{s_j} < X_{\infty}^{s_g}$$
 for $s_j = \sum_{x_1^{i_1} x_2^{i_2} x_3^{i_3} x_4^{i_4} x_5^{i_5} \in T \setminus S} i_j$ and $s_g = |S|$

Obtain final condition for conducting implicit-key attack (au=t/s)

$$\delta < \frac{(\alpha+\beta-1)(1+10\tau+20\tau^2)-10\tau^2-30\tau^3}{4+30\tau+40\tau^2} - \frac{\alpha}{2} + 1$$

Set the optimal value of au when it is the only positive root of

 $120x^4 + 180x^3 + (86 - 20\alpha - 20\beta)x^2 + (16 - 8\alpha - 8\beta)x - \alpha - \beta + 1 = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Main Result

Implicit-Key Attack

Let $N_1 = p_1q_1, N_2 = p_2q_2$ be two RSA moduli of the same bit-size, and p_1, q_1, p_2, q_2 be primes of the same bit-size. Let e_1, d_1, e_2, d_2 satisfy $e_1d_1 \equiv 1 \mod \varphi(N_1)$ and $e_2d_2 \equiv 1 \mod \varphi(N_2)$, such that $e_1 = N^{\alpha_1}$, $e_2 = N^{\alpha_2}$ and $d_1, d_2 \approx N^{\delta}$. Suppose that d_1 and d_2 share $\beta_1 \log_2 N$ MSBs and $\beta_2 \log_2 N$ LSBs. Then N_1, N_2 can be factored in polynomial time if

$$\delta < \frac{(\alpha + \beta - 1)(1 + 10\tau + 20\tau^2) - 10\tau^2 - 30\tau^3}{4 + 30\tau + 40\tau^2} - \frac{\alpha}{2} + 1$$

where $\alpha = \alpha_1 + \alpha_2$, $\beta = \beta_1 + \beta_2$ and au is the only positive root of

 $120x^4 + 180x^3 + (86 - 20\alpha - 20\beta)x^2 + (16 - 8\alpha - 8\beta)x - \alpha - \beta + 1 = 0.$

Experimental Results

Randomly generate 1024-bit moduli and implicitly related keys

$\log_2 N = 1024$			Dim = 6		Dim=21		Dim= 56	
β_1	β_2	δ_t	δ_e	Time	δ_e	Time	δ_e	Time
0.043	0.043	0.271	0.259	0.004s	0.264	0.623s	0.270	47.59s
0.064	0.101	0.291	0.280	0.004s	0.286	0.621s	0.291	47.17s
0.107	0.142	0.312	0.300	0.004s	0.307	0.682s	0.311	37.23s
0.150	0.150	0.325	0.315	0.005s	0.321	0.522s	0.325	32.02s

Table: The comparison of theoretical and experimental results on $\boldsymbol{\delta}$

< □ > < 同 > < 回 > < 回 > < 回 >

Sac

Conclusion

Focus on a new attack scenario concerning implicitly related keys

- Factor RSA moduli using implicit information about private keys
- Apply lattice-based method for solving integer equations
- Verify the validity of implicit-key attack by numerical experiments

Further improvements remain as future work

- More efficient lattice construction for implicit-key attack
- Similar attacks on the RSA cryptosystem in practice

Thank You!

Q & A

SciSec 2019

Implicit-Key Attack on the RSA Cryptosystem

15 / 15

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々ぐ