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ABSTRACT In this paper, we propose two improved theorems for addressing generalized bivariate integer
equations using the lattice-based method. We examine the application of these theorems to the problem of
factoring general RSA (Rivest–Shamir–Adleman) moduli of the form N = prqs where r, s ≥ 1 and p, q
are prime numbers. These moduli, which are commonly used in the RSA cryptosystem and its variants,
have previously been subjected to attacks primarily through the solution of univariate modular equations.
In contrast, we investigate the possibility of factoring N = prqs using leaked most significant bits (MSBs)
or least significant bits (LSBs) of the prime numbers by solving generalized bivariate integer equations.
We determine the minimum amount of known bits required for implementing the proposed factoring attacks
and establish a unifying attack strategy. Furthermore, our results are verified through numerical computer
experiments.

INDEX TERMS Bivariate integer equation, factorization, lattice, RSA.

I. INTRODUCTION
Consider given a monomial set M with respect to two
variables x, y and an integer polynomial f (x, y) :=∑

xiyj∈M cijx iyj for cij ∈ Z, we are interested in solving all
possible roots (x ′, y′) satisfying f (x ′, y′) = 0 in polynomial
time and further maximizing the upper bounds on x ′ and
y′. Solving bivariate integer polynomial equations stemmed
from Coppersmith’s lattice-based analyses [1], [2] on RSA
(Rivest–Shamir–Adleman) cryptosystem [3] and was later
studied by [4], [5], [6], [7]. Coppersmith [2] and Coron [4],
[7] studied several basic cases and efficient solving meth-
ods. Blömer and May [5] proposed an approach to analyze
more situations and presented a useful theorem with concrete
lattice constructions. The advantage is that solving a certain
integer polynomial f (x, y) can be formulated just in terms of
its monomials. Moreover, Jochemsz and May [6] presented a
generic approach for extracting possible roots of modular and
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integer multivariate polynomials. However, it is less efficient
for several multivariate polynomials of specific structures.

RSA [3] is a widely used public-key cryptosystem for
secure data transmission in cyberspace. The standard mod-
ulus N = pq is the product of two large primes of the
same bit-size, namely p and q. To speed up the decryption
phase when utilizing RSA in the constrained environments
like smart cards, some variants with modified moduli such
as N = prq for r > 1 and N = prqs for r, s >

1 have been proposed. Similarly, the primes appearing in
each modulus are suggested to share the same bit-size. The
cryptosystem security is related to the integer factoring prob-
lem. A well-known algorithm for factorizing large compos-
ite integers is Number Field Sieve (NFS) [8], which runs
in sub-exponential time. In practice, some partial informa-
tion leaked by side-channel attacks (e.g. [9], [10]) can be
used to enhance the factoring attacks by solving multivari-
ate polynomial equations. The so-called partial information
is usually referred to as some known bits of the primes.
We further investigate polynomial-time factorization of such

34674 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-0777-4175
https://orcid.org/0000-0003-1347-0442
https://orcid.org/0000-0001-8221-0666


M. Zheng et al.: Solving Generalized Bivariate Integer Equations and Its Application to Factoring With Known Bits

RSA moduli with some known bits of the primes, which is
designated as the factoring with known bits problem.

Rivest and Shamir [11] first studied the factoring with
known bits problem. They used integer programming to fac-
tor N when given 2/3-fraction of p. Later Coppersmith [2]
showed that it can be done when 1/2-fraction of p are known.
The main technique is to solve modular/integer equations
using lattice reduction algorithms, i.e., the LLL (Lenstra-
Lenstra-Lovász) algorithm [12]. This lattice-based idea is
also named Coppersmith’s technique in the literature. A fast
RSA variant using modified moduli N = prq was sug-
gested by Takagi [13]. Later, Boneh, Durfee, and Howgrave-
Graham [14] demonstrated that exposing 1/(r + 1)-fraction
of p is sufficient to factorN in polynomial time. Furthermore,
when r increases to r ≈ log p, one only needs to know a
constant number of p and it can be recovered by exhaustive
search. Hence, the running time of the factorization becomes
polynomial, which implies that one should not use Takagi’s
RSA variant with a large r .

Lim et al. [15] extended general RSA moduli N = prq to
the form of N = prqs. The advantage is that the decryption
phase is much faster than that in Takagi’s RSA variant. How
to generalize lattice-based factoring attacks on N = prqs

for r and s of almost same bit-size was considered as an
open problem in [14]. Lim et al. also analyzed the security
of the extended RSA variant with N = prqr+1 by a modified
lattice-based factoring attack. N = prqr+1 can be factored
in polynomial time when r ≥ log(pq), i.e., r ≥ 2 log p. In
2016, Coron et al. [16] factored N = prqs in polynomial
time when r > log3 p. They first aimed to find an appropriate
decomposition of r and s and then applied Coppersmith’s
technique to factor N . This result was later improved to r ≥

log p by Coron and Zeitoun [17]. To be specific, we have two
positive integers a, b satisfying as−br = 1, which lead to the
decomposition of N a

= (paqb)rq. It is much simpler to factor
N a

= (paqb)rq using the algorithm in [14] to recover p and
q. Lu et al. [18] studied how to factor N = prqs with partial
known bits of p or of pq. They demonstrated that knowing
min{s/(r + s), 2(r − s)/(r + s)}-fraction of p is sufficient to
factor N . Wang et al. [19] showed further improvement on
required known bits of p or q for factoring N = prqs.
We revisit and handle the factoring with known bits

problem by solving generalized bivariate integer polynomial
equations based on the lattice-based technique. Instead of
solving modular equations (i.e., the modular method for
short), we handle the problem by solving integer equations
(i.e., the integer method for short). Previous factoring attacks
such as [16], [18], [20], [21], and [22] on general RSAmoduli
with known bits other than Coppersmith’s original work [23]
are based on the modular method. Conversely, we further
exploit the power of the integer method to present a unifying
attack strategy on factoring N = prqs with known bits.

The subsequent analyses restrict our attack scenarios when
given some MSBs in each prime leaving behind one consec-
utive unknown block. Though the description of our attack

scenario is uncomplicated, we have many integer equations
to solve in different cases. We have the following reasonable
preconditions on the integer exponents r and s to simplify our
analyses.

• We know r and s, otherwise an exhaustive search in time
O(log2 N ) recovers them.

• We have 1 ≤ s ≤ r ≪ log p, otherwise we can exchange
p and q.

• We have gcd(r, s) = 1, otherwise we try to factor
another N ∗

= pr
∗

qs
∗

for r∗
= r/gcd(r, s) and s∗ =

s/gcd(r, s).

More precisely, we aim to factor N = prqs for r ≥ s ≥

1 with some known MSBs denoted by P and Q respectively,
where r and s are two known coprime integers. The LSBs
case is skipped since it is similar to the MSBs case. In the
proposed integer method, we aim to solve several integer
equations like (P + x)r (Q + y)s − N = 0 when perform-
ing factoring attacks on N = prqs with P and Q. Firstly,
we show that most previous results can be obtained through
the integer method. In fact, the modular method is preferable
when s is small (down to 1) or s is large (up to r − 1)
because of the efficiency. Secondly, we observe that the least
amount of known MSBs to factor N depends on the relation
of r and s. To be specific, we identify the most suitable
(r, s) pairs for various r’s and s’s when using the integer
method.
Our results are extensions of Coppersmith’s work [23]

via the integer method, as well as a refinement of previous
solutions to the factoring with known bits problem. A direct
application is to factor RSA moduli in the forms of pr+1qr ,
pr+1qr−1 and pr+2qr−2 with known bits. Such RSA moduli
were suggested by Lim et al. [15] considering optimal effi-
ciency for a roughly fixed sum of the exponents. We show
that some moduli like p3q2 and p5q3 are more vulnerable to
the integer method. Furthermore, a unifying condition on the
desired amount of the prime leakage is derived. Informally
speaking, knowing a fraction

min
{

s
r + s

,

√
rs

r + s− 1 +
√
rs

,
2(r − s)
r + s

}
(1)

of p is sufficient to factor N = prqs for primes p, q of the
same bit-size and coprime integers r > s.

The rest is organized as follows. We review basic defini-
tions and a crucial theorem employed in the integer method in
Section II. Subsequently, two improved theorems are devel-
oped for the factoring with known bits problem. We propose
several factoring attacks using known MSBs in both primes
(i.e., P andQ) or in only one prime (i.e., P orQ) in Section III.
In Section IV, the theoretical results are compared and dis-
cussed in detail to obtain a unifying attack strategy. We con-
duct validation experiments for practical attacks and provide
experimental results in Section V. Section VI concludes the
paper.
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II. SOLVING GENERALIZED BIVARIATE INTEGER
EQUATIONS
We first review basic definitions involved in the integer
method and then state a crucial theorem. After that, we pro-
pose two improved theorems for solving specific bivariate
integer equations in our attack scenarios. We note that the
detailed lattice conception is not mentioned to simplify the
analysis in this paper. More information can be found in [2],
[5], [6], and [24].

An irreducible integer polynomial f (x, y) implies that we
must have |g(x, y)| = |h(x, y)| = 1 if f (x, y) can be expressed
as the product of two integer polynomials g(x, y) and h(x, y).
There exists an index set for any monomial setM in variables
x and y, which is IM := {(i, j) ∈ N2

: x iyj ∈ M}. Its
corresponding convex hull is ch{(i, j) ∈ N2

: x iyj ∈ M} and
the Newton polygon for f (x, y) is

N (f ) := ch{(i, j) ∈ N2
: cij ̸= 0}. (2)

It is important to identify the Newton polygon of an integer
polynomial as well as its polynomial norm when we try to
solve bivariate integer polynomials. The definition of the
polynomial norm is given. Let f (x, y) =

∑
cijx iyj ∈ Z[x, y]

be an integer polynomial. Its lp-norm is defined as

∥f (x, y)∥p =

(∑
|cij|p

)1/p
. (3)

The l∞-norm is involved in the literature of solving inte-
ger polynomials such as [4], [5], and [7]. We point out
that it can be directly deduced from the above definition as
∥f (x, y)∥∞ = max{|cij|} for f (x, y) =

∑
cijx iyj. We provide

the following definitions to guarantee that one can extract the
roots of a given bivariate integer polynomial.
Definition 1 [5]: Let f (x, y) be a bivariate integer polyno-

mial and S,M be two finite non-empty monomial sets in the
variables x and y. The sets S,M are called admissible for
f (x, y) iff

1) For every monomial α ∈ S, the polynomial α · f (x, y)
is defined over M.

2) For every polynomial g(x, y) defined overM, if we have
g(x, y) = h(x, y) · f (x, y) for some polynomial h(x, y),
then h(x, y) is defined over S.

Definition 2 [5]: Let IA and IB be two index sets. The
Minkowski sum IA + IB is defined as

IA + IB
= {(a1, a2) + (b1, b2) : (a1, a2) ∈ IA, (b1, b2) ∈ IB}. (4)

The first property of Definition 1 can be satisfied by M
in a straightforward manner for a given integer polynomial
f (x, y) and a given set S, i.e., M such that IM = N (f ) + IS .
It usually leads to monomial sets S andM also satisfying the
second property, i.e., S and M are admissible for f (x, y).
Lemma 1 [5]: Assume that the Newton polygon N (f ) of

f (x, y) is {(i, j) ∈ N2
: 0 ≤ i ≤ a, 0 ≤ j ≤ b} for

positive integers a and b. Then monomial sets S and M that

correspond to two respective index sets

IS = {(i, j) ∈ N2
: 0 ≤ i ≤ γ k, 0 ≤ j ≤ k},

IM = {(i, j) ∈ N2
: 0 ≤ i ≤ γ k + a, 0 ≤ j ≤ k + b} (5)

are admissible for f (x, y), where k ∈ N controls low order
error terms and γ > 0 optimizes the solving bound.
Lemma 2 [5]: Assume that the Newton polygon N (f ) of

f (x, y) is {(i, j) ∈ N2
: 0 ≤ i ≤ cj/d, 0 ≤ j ≤ d} for

positive integers c and d. Then monomial sets S and M that
correspond to two respective index sets

IS = {(i, j) ∈ N2
: 0 ≤ i ≤ γ k, 0 ≤ j ≤ k}

∪ {(γ k + i, j) ∈ N2
: 0 ≤ i ≤ cj/d, 0 ≤ j ≤ k},

IM = {(i, j) ∈ N2
: 0 ≤ i ≤ γ k, 0 ≤ j ≤ k + d}

∪ {(γ k + i, j) ∈ N2
: 0 ≤ i ≤ cj/d, 0 ≤ j ≤ k + d}

(6)

are admissible for f (x, y), where k ∈ N controls low order
error terms and γ > 0 optimizes the solving bound.
See [5, Lemma 7] for the proofs. Blömer-May theorem for

extracting possible roots of bivariate integer polynomials is
stated as follows.
Theorem 1 [5]: Let f (x, y) be an irreducible integer poly-

nomial in x, y with degree at most dx , dy ≥ 1, respectively.
Let X ,Y denote the upper bounds on possible root (x ′, y′),
W denote ∥f (xX , yY )∥∞, and S,M such that S ⊆ M be two
admissible monomial sets for f (x, y). Set

s := |S|, m := |M |, sx :=

∑
xiyj∈M\S

i, sy :=

∑
xiyj∈M\S

j.

(7)

All possible (x ′, y′) satisfying f (x ′, y′) = 0 can be extracted
in time polynomial in m, dx , dy, and logW provided X sxY sy <

W s, assuming that (m− s)2 = O(sdxdy) is satisfied.
We omit low order terms since the increasing factor of

running time is a constant and one may refer to [5, Section 5]
for a detailed lattice-based proof. However, Theorem 1 cannot
directly apply to factoring general RSA moduli with known
bits. We embody Blömer-May theorem in two improved the-
orems for solving generalized integer polynomials.
Theorem 2: Given f (x, y) = (x + x̃)a(y+ ỹ)b − N, where

a, b are two positive integers, N is a known composite integer,
and x̃, ỹ are approximations of x, y. Let X ,Y denote the upper
bounds on roots (x ′, y′) and set W := ∥f (xX , yY )∥∞. All
possible (x ′, y′) satisfying f (x ′, y′) = 0 can be extracted in
time polynomial in logW if

Xbγ
2
+2aγ Y 2bγ+a < W 2γ (8)

for an optimizing parameter γ > 0. Furthermore, by setting
X = N δ1 ,Y = N δ2 ,W = Nα , the above exponential
inequality leads to a bound (α−aδ1−bδ2)2−abδ1δ2 > 0 for
γ = (α − aδ1 − bδ2)/(bδ1).

Proof: Note that f (x, y) is an irreducible polynomial of
Newton polygon N (f ) = {(i, j) ∈ N2

: 0 ≤ i ≤ a, 0 ≤ j ≤ b}.
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We can construct two admissible sets S andM such that S ⊆

M according to Lemma 1,

S = {x iyj : 0 ≤ i ≤ γ k, 0 ≤ j ≤ k},

M = {x iyj : 0 ≤ i ≤ γ k + a, 0 ≤ j ≤ k + b}, (9)

where k ∈ N and γ > 0 is an optimizing parameter.
Furthermore, we calculate s,m, sx , and sy stated in Theorem 1
as follows.

s =

k∑
j=0

γ k∑
i=0

1 = γ k2 + o(k2), (10)

m =

k+b∑
j=0

γ k+a∑
i=0

1 = γ k2 + o(k2), (11)

sx =

k+b∑
j=0

γ k+a∑
i=0

i−
k∑
j=0

γ k∑
i=0

i =
bγ 2

+ 2aγ
2

k2 + o(k2), (12)

sy =

k+b∑
j=0

γ k+a∑
i=0

j−
k∑
j=0

γ k∑
i=0

j =
2bγ + a

2
k2 + o(k2). (13)

Substituting them in X sxY sy < W s (omitting lower order
terms o(k2) for simplicity) gives

X
bγ 2+2aγ

2 k2Y
2bγ+a

2 k2 < W γ k2 , (14)

which leads to

Xbγ
2
+2aγ Y 2bγ+a < W 2γ . (15)

Additionally, we have dx = a, dy = b and hence (m−s)2 =

O(sdxdy) = O(k2) is satisfied. The time complexity is mainly
dominated by logW since a, b ≪ logW and k = logW .
Thus, the running time is a polynomial regarding logW .
Moreover, by setting X = N δ1 ,Y = N δ2 ,W = Nα ,

we obtain (bγ 2
+2aγ )δ1+(2bγ +a)δ2 < 2γα if considering

the exponents overN . We have bδ1γ 2
+ 2(aδ1 + bδ2−α)γ +

aδ2 < 0, which reduces to (α −aδ1 −bδ2)2 −abδ1δ2 > 0 for
γ = (α − aδ1 − bδ2)/(bδ1).
Theorem 3: Given f (x, y) = (x + x̃)cyd − N, where c, d

are two positive integers, N is a known composite integer,
and x̃ is an approximations of x. Let X ,Y denote the upper
bounds on roots (x ′, y′) and set W := ∥f (xX , yY )∥∞. All
possible (x ′, y′) satisfying f (x ′, y′) = 0 can be extracted in
time polynomial in logW if

X (dγ+c)2Y 2d(dγ+c) < W 2dγ+c (16)

for an optimizing parameter γ > 0. Furthermore, by setting
X = N δ1 ,Y = N δ2 ,W = Nα , the above exponential
inequality leads to a bound (α − dδ2)2 − cαδ1 > 0 for
γ = (α − cδ1 − dδ2)/(dδ1).

Proof: Note that f (x, y) is an irreducible polynomial of
Newton polygon N (f ) = {(i, j) ∈ N2

: 0 ≤ i ≤ cj/d, 0 ≤ j ≤

d}. We can construct two admissible sets S and M such that

S ⊆ M according to Lemma 2,

S = {x iyj : 0 ≤ i ≤ γ k, 0 ≤ j ≤ k}

∪ {xγ k+iyj : 0 ≤ i ≤ cj/d, 0 ≤ j ≤ k},

M = {x iyj : 0 ≤ i ≤ γ k, 0 ≤ j ≤ k + d}

∪ {xγ k+iyj : 0 ≤ i ≤ cj/d, 0 ≤ j ≤ k + d}, (17)

where k ∈ N and γ > 0 is an optimizing parameter.
Furthermore, we calculate s,m, sx , and sy stated in Theorem 1
as follows.

s =

k∑
j=0

γ k∑
i=0

1 +

k∑
j=0

cj/d∑
i=0

1 = (γ +
c
2d

)k2 + o(k2), (18)

m =

k+d∑
j=0

γ k∑
i=0

1 +

k+d∑
j=0

cj/d∑
i=0

1 = (γ +
c
2d

)k2 + o(k2), (19)

sx =

k+d∑
j=0

γ k∑
i=0

i+
k+d∑
j=0

cj/d∑
i=0

(γ k + i) (20)

−

k∑
j=0

γ k∑
i=0

i−
k∑
j=0

cj/d∑
i=0

(γ k + i) (21)

=
(dγ + c)2

2d
k2 + o(k2), (22)

sy =

k+d∑
j=0

γ k∑
i=0

j+
k+d∑
j=0

cj/d∑
i=0

j−
k∑
j=0

γ k∑
i=0

j−
k∑
j=0

cj/d∑
i=0

j (23)

= (dγ + c)k2 + o(k2). (24)

Substituting them in X sxY sy < W s gives

X
(dγ+c)2

2d k2Y (dγ+c)k2 < W (γ+
c
2d )k

2
, (25)

which reduces to

X (dγ+c)2Y 2d(dγ+c) < W 2dγ+c. (26)

Furthermore, we have dx = c, dy = d , and hence (m −

s)2 = O(sdxdy) = O(k2) is satisfied. The time complexity
is mainly dominated by logW since a, b ≪ logW and
k = logW . Thus, the running time is a polynomial regarding
logW .
Moreover, by setting X = N δ1 ,Y = N δ2 ,W = Nα ,

we obtain (dγ + c)2δ1 + 2d(dγ + c)δ2 < (2dγ + c)α
if considering the exponents over N . We have d2δ1γ 2

+

2d(cδ1 + dδ2−α)γ +c2δ1+2cdδ2−cα < 0, which reduces
to (α − dδ2)2 − cαδ1 > 0 for γ = (α − cδ1 − dδ2)/(dδ1).

III. APPLICATION TO FACTORING WITH KNOWN BITS
We propose several attacks to factor N with known MSBs,
namely P and Q. Let us first specify the attack scenarios.
Given N = prqs with r, s and two MSBs approximations
P,Q, where p = P + x and q = Q + y for unknown
variables x, y that can be bounded by X = Y = N η, we aim
to efficiently recover p and q leading to the factorization of
N under minimal requirements of P and Q. It means that the
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size of knownMSBs of p (or q) is N 1/(r+s)−η, or equivalently
p1−(r+s)η.

We obtain the attack results by applying above improved
theorems via the integer method. To do so, we should derive
some integer equations from the above attack scenarios. The
suitable integer equations are divided into two parts as fol-
lows. The first part is involved with two approximations
that consists of solving (P + x)r (Q + y)s − N = 0 and
(PQ + x)sy − N = 0. The second part is related to only one
approximation, which consists of solving (P+ x)ry−N = 0.
Before presenting the analyses, we show that knownMSBs in
one prime can be used to compute some MSBs of the same
bit-size in another prime.
Lemma 3: Let N = prqs for r, s ≥ 1 and primes p, q are

of the same bit-size. Given an MSBs approximation P of p for
|p − P| < N η, the rounding integer Q := [(N/Pr )

1
s ] is an

MSBs approximation of q satisfying |q− Q| < N η.
Proof: Because r, s are negligible compared to p and q,

we assume p, q and P are roughly equal to N
1
r+s and thusQ is

also roughly equal to N
1
r+s . To bound |q−Q|, we first bound

the value of |qs − Qs| since we have

|q− Q| =
|qs − Qs|

qs−1 + qs−2Q+ · · · + Qs−1 ≈
|qs − Qs|

sN
s−1
r+s

. (27)

We defineQ := [(N/Pr )
1
s ] and it leads toQs ≈ N/Pr , which

gives

|qs − Qs| ≈ |qs −
N
Pr

| =
qs|Pr − pr |

Pr
≈ |Pr − pr |N

s−r
r+s .

(28)

Now we bound the value of |Pr − pr |, that is

|Pr − pr | = |P− p|(Pr−1
+ Pr−2p+ · · · + pr−1)

< rN
r−1
r+s+η. (29)

Combining the above results (and omitting negligible r and
s), we have

|q− Q| ≈
|qs − Qs|

N
s−1
r+s

≈
|Pr − pr |N

s−r
r+s

N
s−1
r+s

<
N

r−1
r+s+ηN

s−r
r+s

N
s−1
r+s

= N η, (30)

which terminates the proof.
We mention the known leakage that always refers to the

MSBs approximation P in the following factoring attacks,
which implies that we know both P and Q from N , r and s.

A. USING TWO APPROXIMATIONS
We present the results in theorems derived from solving
bivariate integer equations. More concretely, we try to solve
(P + x)r (Q + y)s − N = 0 and (PQ + x)sy − N = 0 to
obtain the solution to the factoring with known bits problem.
We have a straightforward option to solve (P + x)r (Q +

y)s − N = 0, which is based on the observation that we can
directly put p = P + x and q = Q + y into N = prqs.

Theorem 4: Let N = prqs for r ≥ s ≥ 1 and primes p, q
of the same bit-size. Suppose that a fraction

√
rs

r + s− 1 +
√
rs

(31)

of MSBs of p are known, then we can factor N in time
polynomial in logN.

Proof: Let f (x, y) = (P + x)r (Q + y)s − N and we
apply Theorem 2 with x̃ = P, ỹ = Q, a = r , and b = s to
obtain

X sγ
2
+2rγ Y 2sγ+r < W 2γ . (32)

We need to figure out the value ofW since we knowX = Y =

N η and P ≈ Q ≈ N
1
r+s . Since r, s ≪ log p, the binomial

coefficients can not exceed P,Q and we have

W = ∥f (xX , yY )∥∞

= max{|Pr−1XQs|, |PrQs−1Y |, |PrQs − N |}

= N
r+s−1
r+s +η. (33)

Considering the exponents in the condition, it leads to

η(sγ 2
+ 2rγ + 2sγ + r) < 2γ

(
r + s− 1
r + s

+ η

)
, (34)

which further reduces to

η <
2(r + s− 1)γ

(r + s)(sγ 2 + 2(r + s− 1)γ + r)
. (35)

We set γ =
√
r/s to make the right side reach its maximum

and then obtain

η <
r + s− 1

(r + s)(r + s− 1 +
√
rs)

. (36)

A fraction 1− (r + s)η is required, which implies that at least
a fraction

1 − (r + s)
r + s− 1

(r + s)(r + s− 1 +
√
rs)

=

√
rs

r + s− 1 +
√
rs
(37)

of p and q is required. The time complexity is polynomial in
logW , and it is also polynomial in logN .
We have another integer equation (PQ + x)sy − N =

0 based on the observation (P+ x)r (Q+ y)s = ((P+ x)(Q+

y))spr−s = (PQ + Qx + Py + xy)spr−s = N . Thus, we can
apply Theorem 3 for this bivariate integer equation.
Theorem 5: Let N = prqs for 1 ≤ s < r < 3s and primes

p, q of the same bit-size. Suppose that a fraction

2(r − s)
r + s

(38)

of MSBs of p are known, then we can factor N in time
polynomial in logN.

Proof: Let f (x, y) = (PQ + x)sy − N and we apply
Theorem 3 with x̃ = PQ, c = s, and d = 1, we have

X (γ+s)2Y 2(γ+s) < W 2γ+s. (39)
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We figure out the values of X , Y that are X = N
1
r+s+η and

Y = pr−s = N
r−s
r+s . The value ofW is

W = ∥f (xX , yY )∥∞ = max{|(PQ)sY |, |N |} = N . (40)

From the condition, we have

(γ + s)2
(

1
r + s

+ η

)
+

2(r − s)
r + s

(γ + s) < 2γ + s, (41)

which reduces to

η <
−γ 2

+ 2sγ + 2s2 − rs
(r + s)(γ + s)2

. (42)

We set γ = (r − s)/2 to make the right side reach its
maximum and then obtain

η <
3s− r
(r + s)2

. (43)

We must have s < r < 3s since γ, η > 0. The solution of y
is enough to compute p, so a fraction at least

1 − (r + s)
3s− r
(r + s)2

=
2(r − s)
r + s

(44)

of p is required to recover p and then factor N . The time
complexity is polynomial in logW , and thus is polynomial
in logN .

Besides, we can solve (PQ+ x)syr−s − N = 0 and (PQ+

x)s(P + y)r−s − N = 0. The result of the former equation is
the same as Theorem 5. We apply Theorem 3 with x̃ = PQ,
c = s, and d = r − s for X = N

1
r+s+η, Y = N

1
r+s , and

W = N . Setting γ = 1/2 in the proof to obtain

η <
3s− r
(r + s)2

. (45)

It reduces to the same result that we require a fraction at least

1 − (r + s)
3s− r
(r + s)2

=
2(r − s)
r + s

. (46)

As for the latter equation, we can apply Theorem 2 with
x̃ = PQ, ỹ = P, a = s, and b = r − s for X = N

1
r+s+η,

Y = N η, and W = N
r+s−1
r+s +η. The result implies that we

need at least a fraction√
s2(r − s)2 + 8s(r − s)(r − 1)2 + s(r − s)√

s2(r − s)2 + 8s(r − s)(r − 1)2 + s(r − s) + 2(r − 1)2

(47)

of p to factor N in polynomial time for r > s ≥ 1. However,
this result is always inferior to that stated in Theorem 4 and
Theorem 5.

B. USING ONE APPROXIMATION
We employ both p = P + x and q = Q + y for unknown
variables x, y bounded by X = Y = N η in Section III-A. But
we observe that W decreases when taking both P and Q into
consideration and it may weaken the bound on η. Therefore,
we try to explore the factoring attacks only with the help of
P or Q. More concretely, we try to solve (P + x)ry − N =

0 without the knowledge of Q.

Theorem 6: Let N = prqs for r ≥ s ≥ 1 and primes p, q
of the same bit-size. Suppose that a fraction

s
r + s

(48)

of MSBs of p are known, then we can factor N in time
polynomial in logN.

Proof: Let f (x, y) = (P + x)ry − N and we apply
Theorem 3 with x̃ = P, c = r , and d = 1 to obtain

X (γ+r)2Y 2(γ+r) < W 2γ+r , (49)

where the upper bounds are X = N η, Y = N
s

r+s , and W =

∥f (xX , yY )∥∞ = N . Then we have

η(γ + r)2 +
2s
r + s

(γ + r) < 2γ + r . (50)

It reduces to

η <
2rγ + r2 − rs
(r + s)(γ + r)2

. (51)

We set γ = s to make the right side reach its maximum and
then obtain

η <
r

(r + s)2
. (52)

The solution of roots x, y implies the values of p and q,
respectively. So a fraction at least

1 − (r + s)
r

(r + s)2
=

s
r + s

(53)

is required to recover p and then factor N . The time complex-
ity is polynomial in logW , and it is also polynomial in logN .

Similarly, we can solve (P+ x)rys−N = 0 via Theorem 3
for x̃ = P, c = r , and d = s with the upper bounds X = N η,
Y = N

1
r+s , and W = ∥f (xX , yY )∥∞ = N . We set γ = 1 in

the proof and obtain

η <
r

(r + s)2
. (54)

It results in the same result as that in Theorem 6.
When we consider using one approximation P or Q, there

also exist two integer equations (Q+ x)sy−N = 0 and (Q+

x)syr−N = 0. For completeness, we provide the result but do
not discuss it in further comparison since it is a worse choice
for r ≥ s. For example, we apply Theorem 3 to solve (Q +

x)sy − N = 0 for x̃ = Q, c = s, and d = r with X = N η,
Y = N

r
r+s , and W = N . Setting γ = r , we obtain

η <
s

(r + s)2
, (55)

which means that a fraction at least

1 − (r + s)
s

(r + s)2
=

r
r + s

(56)

is required to recover q and then factor N .
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TABLE 1. The comparison of our proposed attacks with existing results against schemes using RSA moduli N = pr qs.

IV. COMPARISON AND DISCUSSIONS
We show the comparison of our proposed attacks with exist-
ing techniques against schemes using RSA moduli N = prqs

in Table 1. Our work is superior based on the comparison and
covers several previous results.

Since the modular method is more efficient and simpler
for some specific equations, solving modular equations are
preferred when the same or even better attack results can
be obtained. However, taking Theorem 4, Theorem 5, and
Theorem 6 into consideration, the integer method shows its
power for solving a generalized bivariate integer equation
(P+ x)r (Q+ y)s − N = 0, which is involved in Theorem 4.
We compare the required amounts of knownMSBs derived

from the integer method in Section III to conclude a uni-
fying condition since the fractions of desired known bits
differ when solving distinct integer equations. Our theoretical
results and the unifying condition to factoring general RSA
moduli with known bits are showed in Fig. 1. The respective
fractions required for factoring general RSA moduli N =

prqs with known bits and the corresponding solvable integer
equations are summarized as follows.

• For the solvable equation (P + x)r (Q + y)s − N =

0 with r ≥ s ≥ 1, the required fraction given via
Theorem 4 is

√
rs

r + s− 1 +
√
rs

. (57)

• For the solvable equations (PQ + x)sy − N = 0 and
(PQ + x)syr−s − N = 0 with 1 ≤ s < r < 3s, the
required fraction given via Theorem 5 is

2(r − s)
r + s

. (58)

• For the solvable equations (P+ x)ry− N = 0 and (P+

x)rys − N = 0 with r ≥ s ≥ 1, the required fraction
given via Theorem 6 is

s
r + s

. (59)

We discuss more the unifying condition. For N = pq with
r = s = 1, we can apply Theorem 4 and Theorem 6. Our
results cover that of [1] but we can provide more solvable
equations. For the modified RSA modulus N = prq with
r > 1, s = 1, we can apply Theorem 6 since the required
amount of known MSBs is least. Our results also cover those
of [14] and [18]. However, for general RSAmoduliN = prqs

with arbitrary r, s > 1, we should compare the above three
fractions to choose the best one. We show the comparison
of the numerical values of the respective fractions for r =

3, 4, 5, 6 with various reasonable s’s in Table 2. It is showed
that the best choice actually depends on both r, s and their
relation.

To be concrete, Theorem 4 is preferred for medium s for a
fixed r . Theorem 6 is more effective for small s like s = 1 and
Theorem 5 works better for large s like s = r − 1. Further-
more, we identify the respective applicable ranges of s along
with the most suitable solvable equations for each theorem
in Table 3. The results also include s = 1 that is considered
as a special case of Theorem 6 if θ (r) < 1. Additionally, the
restrictions on each theorem are always satisfied. We further
define two functions θ (r) and ξ (r) for simplicity since the
explicit forms are complicated to express.
Definition 3: Given a positive integer r, let θ(r) be the

unique real root in (0, 1) of the following equation

√
xr

r + xr − 1 +
√
xr

=
xr

r + xr
, (60)

which can be explicitly expressed as

x =

 3
√
27r3 +

√
(729r6 + 108(r − 1)3r3)

3 3√2r

−

3√2(1 − r)
3
√
27r3 +

√
(729r6 + 108(r − 1)3r3)

2. (61)

34680 VOLUME 11, 2023



M. Zheng et al.: Solving Generalized Bivariate Integer Equations and Its Application to Factoring With Known Bits

FIGURE 1. The horizontal and vertical axes denote the value of ratio s/r and required fraction of known bits, respectively.
The grey area indicates factoring attacks derived by solving generalized bivariate integer equations. It is regarded as a
unifying solution to the factoring with known bits problem on general RSA moduli.

TABLE 2. The values of respective fractions for several (r , s) pairs.

TABLE 3. The respective applicable ranges of s according to the proposed theorems.

TABLE 4. The values of θ(r ) and ξ (r ) for various r ≤ 9.

Let ξ (r) be the unique real root in (0, 1) of the following
equation

√
xr

r + xr − 1 +
√
xr

=
2(r − xr)
r + xr

, (62)

which cannot be explicitly expressed but can be calculated by
numerical methods.

We list the numerical values of θ(r) and ξ (r) for r ≤ 9 in
Table 4. The results are applicable for all reasonable (r, s)
pairs if we let the cases when s = 1 for r = 1, 2 belong
to Theorem 6. Finally, we derive a unifying condition for

factoring general RSA moduli N = prqs with known
bits. To explicitly understand our proposed factoring attacks,
we list the theoretical required minimum number of prime
bits for factoring various moduliN = prqs using the unifying
condition in Table 5. We let both p and q be two ℓ-bit primes
for ℓ = 512, 1024, and 2048 to make the illustration more
realistic.

Though our proposed factoring attacks run in polynomial
time, we further analyze the attack complexity. As our attacks
are derived from the lattice-based method that rely on the
LLL algorithm, the attack complexity is mainly dominated
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TABLE 5. The theoretical required minimum leaked prime bits for factoring various moduli N = pr qs with ℓ-bit primes.

by the LLL algorithm [12]. We know that it shall terminate
in time complexity O(n6 log3 B), where n denotes the lattice
dimension and B denotes the maximal Euclidean norm of
lattice vectors. Assume that we aim to factor N = prqs with
known bits for ℓ-bit primes and the proposed factoring attacks
are conducted using an n-dimensional lattice, the maximal
Euclidean norm B of lattice vectors is approximate p

3√n due
to our lattice construction. Hence, the attack complexity is
O(n6 log3 B) ≈ O(n6( 3

√
n log p)3) = O(n7ℓ3). The attack

complexity is a roughly estimated upper bound since the LLL
algorithm works better in practice.

We want to give a more accurate estimation of the execu-
tion time of our proposed factoring attacks based on the attack
complexity. Considering the computing power of modern
personal computers and the execution time of fundamental
operations, we estimate that the complexity O(1018) can be
completed in one second. The execution time (recorded in
seconds) and its corresponding attack complexity for con-
ducting factoring attacks using an n-dimensional lattice are
estimated in Table 6. Both p and q are assumed to be two
512-bit primes for simplicity. The symbol ‘∼’ indicates that
the execution time is at the given magnitude. Based on the
observation of the estimated execution time, we would like
to use a lattice whose dimension is less than 100 in our
experiments for efficient validation.
Example 1: We provide the concrete choices for several

RSA moduli with 1 ≤ r, s ≤ 9with respect to solvable integer
equations as follows.

• We choose to solve (P+ x)ry− N = 0 for factoring pq,
p2q, p3q, p4q, p5q, p5q2, p6q, p7q, p7q2, p7q3, p8q, p8q3,

p9q, p9q2, p9q4 with known bits.
• We choose to solve (P + x)r (Q + y)s − N = 0 for
factoring p3q2, p5q3, p7q4, p8q5, p9q5 with known bits.

• We choose to solve (PQ + x)sy − N = 0 for factoring

p4q3, p5q4, p6q5, p7q5, p7q6, p8q7, p9q7, p9q8 with
known bits.

Proposition 1: We provide a unifying attack strategy for
factoring general RSA moduli N = prqs with known bits with
respect to a sufficiently large s (satisfying s ≪ log p).

• Solve (PQ+ x)sy− N = 0 for 0.716r < s < r,
• Solve (P + x)r (Q + y)s − N = 0 for 0.465r < s ≤

0.716r,
• Solve (P+ x)ry− N = 0 for else cases.

V. VALIDATION EXPERIMENTS
We provide the experimental results to check the validity
of our proposed factoring attacks according to Theorem 4,
Theorem 5, and Theorem 6, respectively. The experiments
were conducted under Windows 10 running on a computer
with 3.10GHz CPU and 8 GB RAM. We utilized the LLL
algorithm available in SageMath [26]. The RSA instances
were generated uniformly at random. To simulate practical
factoring attacks on general RSA moduli N = prqs with
known bits, we first randomly generated two ℓ-bit primes.
Then we calculated N = prqs for given parameters r and
s. The amount of known bits in MSBs of primes p and q was
assumed as u and hence the exposedMSBs, i.e., P andQwere
computed based on p, q and u. Finally, we could construct the
above solvable integer equations like (P + x)ry − N = 0,
(PQ+ x)sy− N = 0, and (P+ x)r (Q+ y)s − N = 0.
During the experiments, we chose a proper lattice set-

ting for conducting the proposed factoring attacks. We could
collect many polynomial equations satisfying our solvable
requirements and hence extract the desired root, i.e., the
unknown part of the primes and then factor the given RSA
moduli. The experimental results of our proposed factoring
attacks are shown in Table 7. The ‘u’-column provides the
experimental number of bits leading to successful factoring
attacks. The ‘ut ’-column provides the theoretical required
number of bits for conducting the proposed factoring attacks
as stated in Table 5. The ‘Theorem’-column and ‘Equation’-
column provides the specific theorem and solvable integer
equation we used for given practical instance in our factoring
attacks. The corresponding lattice dimension is denoted by
‘n’ and the running time is ‘Time’ (recorded in seconds).

We collected enough integer polynomials having the com-
mon root in each experiment. We took some of them to
extract the common root and obtained the correct values in
the unknown part of the primes, namely x ′

= p − P or
y′ = q − Q. Thus, p = P + x ′ and q = Q + y′ finally
led to the factorization of N . Through the above experiments,
we successfully verified the validity of our proposed factoring
attacks. However, the experimental results are still several bits
away from the theoretical ones when comparing u with ut in
Table 7. The reason may be that the lattice dimension is not
large enough due to the limitation of computing resources.

From the observation of Table 7, we find that Theorem 4
works more efficient than Theorem 5 and Theorem 6.
Besides, Theorem 5 has the worst performance. More
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TABLE 6. The execution time and its corresponding attack complexity for conducting factoring attacks with 512-bit primes using an n-dimensional lattice.

TABLE 7. The experimental results of our proposed factoring attacks.

specifically, the experimental results of the factoring attacks
induced by Theorem 4 are closest to the theoretical results.
In contrast, the experimental results of the factoring attacks
induced by Theorem 5 differ the most from the theoretical
results. The running time meets our prediction for it as stated
in Table 6. Moreover, we show the following example for
numerical understanding.
Example 2: We provide a toy example for factoring N =

p2q with known P via Theorem 6. Two primes p, q are set of
128-bit, which implies ℓ = 128. Suppose that we are given
known 52-bit MSBs, which implies u = 52. Note that the
theoretical result for recovering the primes is ut = 43. The
toy RSA instance is listed as follows.

N = 2676924230283243720261014287455130479504

\4225822158941961472413312864808332757515

\020832236590800828421542339105151967

P = 301958494768445181148100139329150517248

We then derive the solvable integer equation (P + x)2y −

N = 0 with known parameters N and P. We construct a
91-dimensional lattice for conducting the proposed factoring
attack via Theorem 6. After nearly 37 seconds, we extract the
root (x ′, y′) satisfying the above equation. The obtained root
is listed as follows.

x ′
= 35811068498785421000871

y′ = 293590213774301270676454386402555434447

Since we have x ′
= p − P and y′ = q, these two primes are

computed as follows.

p = 301958494768445181148100139329150517248

+ 35811068498785421000871

= 301958494768445216959168638114571518119

q = 293590213774301270676454386402555434447

One may check that N = p2q does hold and hence we
successfully factor the given modulus N .

VI. CONCLUSION
We revisited the factoring with known bits problem on gen-
eral RSA moduli N = prqs with r, s ≥ 1 for two primes
p, q of the same bit-size. To be specific, we examined the
minimum amount of known MSBs of the primes required
for factoring and derived the attack results based on solving
generalized bivariate integer equations. We established a uni-
fying condition on the required fraction of known MSBs for
factoring N = prqs. Our analysis identified one solution as
superior for certain combinations of (r, s), such as p3q2, p5q3,
p7q4, p8q5, and p9q5, when s is of medium size relative to r .
Theoretical analysis and experimental results were provided
to verify the effectiveness of our proposed factoring attacks.

We demonstrated that the integer method is more pow-
erful as it covers the majority of results derived from the
modular method and provides new solvable integer equations
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for conducting factoring attacks. We hope that such integer
method can be applied to other problems involving the solu-
tion of generalized bivariate integer equations and yield even
better results.
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