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Abstract In this paper, we consider a variant of RSA schemes called Prime Power RSA with modulus N = prq

for r � 2, where p, q are of the same bit-size. May showed that when private exponent d < N
r

(r+1)2 or

d < N

(
r−1
r+1

)2

, N can be factored in polynomial time in PKC 2004. Later in 2014, Sarkar improved the bound

for r � 5. We propose a new cryptanalytic method to attack this RSA variant when given two pairs of public

and private exponents, namely (e1, d1) and (e2, d2) with the same modulus N . Suppose that we know d1 < Nδ1

and d2 < Nδ2 . Our results show that when δ1δ2 <
(

r−1
r+1

)3
, Prime Power RSA is insecure.

Keywords cryptanalysis, Prime Power RSA, two private exponents, LLL algorithm, Coppersmith’s techniques

Citation Zheng M C, Hu H G. Cryptanalysis of Prime Power RSA with two private exponents. Sci China Inf

Sci, 2015, 58: 110103(8), doi: 10.1007/s11432-015-5409-4

1 Introduction

The famous RSA cryptosystem [1] plays an important role in the area of information security due to its

popularity. Since Coppersmith introduced a new lattice-based method of finding small roots of modular

and integer equations [2,3], many researchers have studied its vulnerability in various cases such as

small public exponent [2–4], small private exponent [5–8], and partial key exposure [9–13]. Opposed

to cryptanalysis of the original RSA, several variants of RSA schemes have been proposed for efficient

encryption and decryption, or for higher security.

In this paper, we concentrate on the variant with modulus N = prq for r � 2, where p and q are two

primes of the same bit-size. We call this variant Prime Power RSA. It was introduced in [14] by Takagi

in Crypto 1998. He showed that the decryption process of Prime Power RSA is much faster than the

variant using Chinese remainder theorem.

There are two different types of Prime Power RSA according to the definition of e, d, where e denotes

the public exponent and d denotes the private exponent.

Type i ed ≡ 1 mod φ(N), where φ(N) = pr−1(p− 1)(q − 1).

Type ii ed ≡ 1 mod φ̃(N), where φ̃(N) = (p− 1)(q − 1).
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Boneh et al. [15] studied the factorization of N for leaking some bits of p, so that Prime Power RSA is

insecure. When one knows 1
r+1 fraction of the most significant bits (MSBs) of p, it is sufficient to factor

N in polynomial time. Also, small private exponent attack has been proposed. For Type i, Takagi [14]

showed that Wiener’s continued fraction attack is effective for small private exponent d < N
1

2(r+1) .

May [16] improved the bound to d < N
r

(r+1)2 or d < N( r−1
r+1 )

2

by lattice-based method in PKC 2004.

Later in 2014, Sarkar [17] improved the bound for r � 5. For Type ii, Itoh [18] et al. showed that Prime

Power RSA is insecure for d < N
2−√

2
r+1 .

However, there is one limitation that previous work considers one pair of public and private exponents

of Prime Power RSA. Hence, we are interested in a new situation, where many instances are given with

a common modulus N . To be specific, we investigate the security of Prime Power RSA with two private

exponents for Type i.

From the main equation of Type i, namely ed ≡ 1 mod φ(N), where φ(N) = pr−1(p − 1)(q − 1), we

have {
e1d1 = k1p

r−1(p− 1)(q − 1) + 1,

e2d2 = k2p
r−1(p− 1)(q − 1) + 1,

for some positive integers k1, k2. Let e
′
1, e

′
2 be the inverse of e1, e2 modulo N respectively. Then we have{

e1e
′
1 = l1N + 1,

e2e
′
2 = l2N + 1,

for some positive integers l1, l2. If e′1 or e′2 does not exist, we can obtain the factorization of N by

computing the greatest common divisors GCD(e1, N) and GCD(e2, N). They must be non-trivial divisors

of N , namely pt, pt
′
q (1 � t, t′ � r) or q. Combining them together leads to{

d1 − e′1 = (e′1k1(p− 1)(q − 1)− l1d1pq)p
r−1,

d2 − e′2 = (e′2k2(p− 1)(q − 1)− l2d2pq)p
r−1.

It finally reduces to {
d1 − e′1 = 0 mod pr−1,

d2 − e′2 = 0 mod pr−1.
(1)

We note that our method is also available for partial key exposure attacks. The attacks can be divided

into two cases. When given MSBs d′ with d = d′ + d̃, we have ed̃ + ed′ − 1 ≡ 0 mod φ(N). By using

the above technique, we obtain d̃ + e′(ed′ − 1) = 0 mod pr−1 for e′ denoting the inverse of e modulo

N . When given LSBs d′ with d = d̃M + d′, we have eMd̃ + ed′ − 1 ≡ 0 mod φ(N). There also exists

d̃ + e′(ed′ − 1) = 0 mod pr−1 for e′ denoting the inverse of eM modulo N . Since we have two private

exponents for the same modulus N , gathering them together gives us{
d̃1 + a1 = 0 mod pr−1,

d̃2 + a2 = 0 mod pr−1,
(2)

for ai = e′i(eid
′
i − 1), where d′i denotes known MSBs (or LSBs) and e′i denotes the inverse of ei (or eiMi)

modulo N for i = 1, 2.

We apply Takayasu and Kunihiro’s better lattice constructions [19] to solve bivariate linear equations

modulo an unknown divisor. We now estimate the unknown divisor in our attacks. It is easy to see that

p, q ≈ N
1

r+1 . So, we have pr−1 ≈ N
r−1
r+1 . To achieve the theoretical results, our method relies on the

following heuristic assumption.

Assumption 1. Algebraically independent polynomials can be obtained by our lattice-based method,

and the common root can be efficiently solved by the Gröbner basis computations.

Our main results are stated in the following theorems that will be proved in Section 3 afterwards. We

want to point out that the theoretical results stated below are asymptotic since we require the dimension

of the corresponding lattice to be preferably large.
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Theorem 1. Let N = prq for r � 2 be a known RSA modulus, where p and q are two primes of the

same bit-size. Let e1, d1, e2, d2 satisfy e1d1 ≡ 1 mod φ(N) and e2d2 ≡ 1 mod φ(N), such that e1, e2 ≈ N ,

d1 < N δ1 , and d2 < N δ2 . Then under Assumption 1, N can be factored in polynomial time if

δ1δ2 <

(
r − 1

r + 1

)3

.

Theorem 2. Let N = prq for r � 2 be a known RSA modulus, where p and q are two primes of the

same bit-size. Let e1, d1, e2, d2 satisfy e1d1 ≡ 1 mod φ(N) and e2d2 ≡ 1 mod φ(N), such that e1, e2 ≈ N

and some MSBs or LSBs of d1, d2 are given. Suppose that for i = 1, 2, given MSBs d′i with di = d′i + d̃i
and d̃i < Nγi , or given LSBs d′i with di = d̃iM + d′i and d̃i < Nγi . Then under Assumption 1, N can be

factored in polynomial time if

γ1γ2 <

(
r − 1

r + 1

)3

.

The rest of the paper is organized as follows: We review basic results of lattice reduction theory in

Section 2. In Section 3, we describe the method of solving simultaneous equations (1) and (2). In

Section 4, we provide the experimental results to verify our attacks. The paper concludes in Section 5.

2 Preliminaries

In this section, we introduce lattice and the LLL algorithm (Lenstra-Lenstra-Lovász algorithm). Then we

refer to Coppersmith’s techniques and the generalized reformulation summarized by Howgrave-Graham’s

lemma. Finally, we provide the condition for finding the common root and simply mention the running

time of our method.

A lattice L spanned by linearly independent vectors b1, . . . , bm ∈ R
n is the set of all integer linear

combinations of b1, . . . , bm. (b1, . . . , bm) is called a basis of L and m is known as the dimension. We

usually consider a full-rank lattice when m = n. L can be denoted by

L(b1, . . . , bm) =

{
m∑
i=1

zibi|zi ∈ Z

}
.

For i = 1, . . . ,m, we regard each basis vector bi as a row vector, hence (b1, . . . , bm) generates the

m×n basis matrix B. Thus, this lattice can also be written as L(B). The determinant of L is calculated

as det(L) =
√
det(BBT ). We have det(L) = | det(B)| when L is full-rank (B is a square matrix). It

can be easily inferred that different bases of the same lattice do not change its determinant. Therefore

we provide another definition det(L) =
∏m

i=1 ‖b∗i ‖, where b∗1, . . . , b
∗
m are derived from Gram-Schmidt

orthogonalization to a basis (b1, . . . , bm), and ‖ · ‖ denotes the Euclidean norm of a vector.

The LLL algorithm proposed by Lenstra et al. [20] is practically used for finding approximate non-zero

short lattice vectors due to its efficient running results computed in polynomial time. We provide the

following substratal lemma about the outputs of the LLL algorithm.

Lemma 1 (LLL). Let L be a lattice spanned by a basis (b1, b2, . . . , bm). The LLL algorithm outputs

a reduced basis (v1,v2, . . . ,vm) of L in polynomial time, that satisfies

‖v1‖, ‖v2‖, . . . , ‖vi‖ � 2
m(m−1)

4(m+1−i) det(L) 1
m+1−i ,

for 1 � i � m.

The following lemma presented by Howgrave-Graham [4] gives a criterion for judging whether the

desired small root of a modular equation is also root over Z. To a given polynomial g(x1, . . . , xn) =∑
ai1,...,inx

i1
1 · · ·xin

n , its norm is defined by ‖g(x1, . . . , xn)‖2 :=
∑ |ai1,...,in |2.

Lemma 2 (Howgrave-Graham). Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an integer polynomial that is a

sum of at most m monomials. Suppose that

1. g(x
(0)
1 , . . . , x

(0)
n ) ≡ 0 mod R, where |x(0)

1 | < X1, . . . , |x(0)
n | < Xn,
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2. ‖g(x1X1, . . . , xnXn)‖ < R√
m
.

Then it also holds over the integers, namely g(x
(0)
1 , . . . , x

(0)
n ) = 0.

Thus we can solve the polynomials derived from the LLL algorithm. Consider that we already have

the first two basis vectors by the LLL algorithm, the condition for finding the common root over the

integers implies that 2
m
4 det(L) 1

m−1 < R√
m
, which leads to det(L) < Rm−12−

m(m−1)
4 m−m−1

2 . Since we

usually have m � R, an error term ε is used on behalf of the small terms except Rm, and then it reduces

to det(L) � Rm−ε.

We obtain a lower triangular basis matrix in our method all the time. The determinant can be simply

calculated as det(L) = NsNXs1
1 Xs2

2 , where each si denotes the sum of total exponent of Xi or N that

appears on the diagonal. Hence, we give the following condition,

NsNXs1
1 Xs2

2 < Rm. (3)

The running time of our method depends on the time of reducing basis matrix by the LLL algorithm

and extracting the common root by the Gröbner basis computations. Both of them can be done in

polynomial time, since the lattice dimension, the degrees of the desired polynomials, the bit-size of the

entries of basis matrix, and the coefficients of polynomials are fixed in polynomial form of some parameters

for concrete instances.

3 Solving simultaneous modular equations

According to Coppersmith’s techniques, the basic idea for finding small roots of modular equations is to

translate this problem to finding them over the integers. To do so, we construct a set of polynomials

sharing the common root modulo R. Then we begin to search some integer linear combinations of the

constructed polynomials’ coefficient vectors whose norm is expected to be sufficiently small by the LLL

algorithm.

First, we want to solve (1). We define the following shift polynomials for a positive integer s,

fi1,i2(x1, x2) = (x1 − e′1)
i1(x2 − e′2)

i2Nmax(s−i1−i2,0),

where |x1| < X1 and |x2| < X2. We now deal with the above bivariate modular equation. As described

previously, all polynomials fi1,i2(x1, x2) share the common root (d1, d2) modulo ps(r−1). From [19], we

know the optimal condition for choosing the shift polynomials,

0 � δ1i1 + δ2i2 � r − 1

r + 1
s.

When we consider the general case that δ1 = δ2 = δ, there is a more concise condition,

0 � i1 + i2 � r − 1

r + 1
· s
δ
.

Afterwards, we begin to search an integer linear combination of all fi1,i2(x1X1, x2X2) by the LLL

algorithm and ensure that its norm is sufficiently small in order to meet the conditions in Lemma 2. Here

we know that X1 = N δ1 , X2 = N δ2 , and R = pr−1 ≈ N
r−1
r+1 . Then we build lattice L spanned by the

corresponding coefficient vectors. It can also be represented by a square basis matrix whose rows are the

polynomials’ coefficient vectors. We use the LLL algorithm to find a small norm vector that leads to a

small norm polynomial.

We define the monomial order ≺ as xi1
1 xi2

2 ≺ xj1
1 xj2

2 if i1+ i2 < j1+ j2 or i1+ i2 = j1+ j2, i1 > j1. Two

simple examples are shown in Table 1 (δ1 = δ2) and Table 2 (δ1 �= δ2), where other non-zero off-diagonal

entries are denoted by ∗.
For a given parameter s, we can compute the dimension of the full-rank lattice, which is denoted by

m. After that, our task is to compute det(L). Since it is a lower triangular square matrix, we can easily
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Table 1 A simple example with δ1 = 0.2, δ2 = 0.2, s = 2, and r = 2

fi1,i2 1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x3

2

f0,0 N2

f1,0 * NX1

f0,1 * NX2

f2,0 * * X2
1

f1,1 * * * X1X2

f0,2 * * X2
2

f3,0 * * * X3
1

f2,1 * * * * * X2
1X2

f1,2 * * * * * X1X2
2

f0,3 * * * X3
2

Table 2 A simple example with δ1 = 0.3, δ2 = 0.4, s = 3, and r = 3

fi1,i2 1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x3

2 x4
1 x3

1x2 x2
1x

2
2 x1x3

2 x5
1

f0,0 N3

f1,0 * N2X1

f0,1 * N2X2

f2,0 * * NX2
1

f1,1 * * * NX1X2

f0,2 * * NX2
2

f3,0 * * * X3
1

f2,1 * * * * * X2
1X2

f1,2 * * * * * X1X2
2

f0,3 * * * X3
2

f4,0 * * * * X4
1

f3,1 * * * * * * * X3
1X2

f2,2 * * * * * * * * X2
1X

2
2

f1,3 * * * * * * * X1X3
2

f5,0 * * * * * X5
1

compute it by counting the exponential numbers of X1, X2, and N on the diagonal, respectively.

m =

r−1
r+1 s∑

δ1i1+δ2i2=0

1 =
1

2δ1δ2

(
r − 1

r + 1
s

)2

+ o(s2),

sN =

s∑
i1+i2=0

(i1 + i2 + 1)(s− i1 − i2) =
1

6
s3 + o(s3),

s1 =

r−1
r+1 s∑

δ1i1+δ2i2=0

i1 =
1

6δ21δ2

(
r − 1

r + 1
s

)3

+ o(s3),

s2 =

r−1
r+1 s∑

δ1i1+δ2i2=0

i2 =
1

6δ1δ22

(
r − 1

r + 1
s

)3

+ o(s3).

Consequently, we know det(L) = NsNXs1
1 Xs2

2 forX1 = N δ1 andX2 = N δ2 from above. If the condition

for finding the common root holds, the norms of the first two vectors derived from LLL-reduced basis are

sufficiently small. Thus we can translate them into the corresponding polynomials g1 and g2 having the
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Table 3 Comparison with previous results on numerical upper bound of δ for various r

r
(

r−1
r+1

) 3
2

[17] r
(r+1)2

[16]
(

r−1
r+1

)2
[16]

2 0.192 0.395 0.222 0.111

3 0.353 0.410 0.187 0.25

4 0.464 0.437 0.16 0.36

5 0.544 0.464 0.138 0.444

6 0.603 0.489 0.122 0.510

7 0.649 0.512 0.109 0.562

8 0.685 0.532 0.098 0.604

same root and finally solve (d1, d2).

Although the polynomials g1, g2 derived from the LLL algorithm are linearly independent, they may

have a common factor. Assumption 1 ensures that we can solve the common root. Additionally, our

experiments confirm this assumption.

Now we estimate δ1 and δ2. Then (3) indicates that the following inequality holds,

N
1
6 s

3+o(s3) ·N δ1· 1

6δ2
1
δ2
( r−1

r+1 s)
3
+o(s3) ·N δ2· 1

6δ1δ2
2
( r−1

r+1 s)
3
+o(s3)

< N
r−1
r+1 s· 1

2δ1δ2
( r−1

r+1 s)
2
+o(s3)

.

For taking s → ∞ and omitting the lower term o(s3), we have

1

6
+

δ1
6δ21δ2

(
r − 1

r + 1

)3

+
δ2

6δ1δ22

(
r − 1

r + 1

)3

<
r − 1

r + 1
· 1

2δ1δ2

(
r − 1

r + 1

)2

.

It can be simplified to 1
δ1δ2

(
r−1
r+1

)3

> 1, which further reduces to

δ1δ2 <

(
r − 1

r + 1

)3

.

We assume that δ1 = δ2 = δ for the comparison with previous results, which is showed in Table 3.

Therefore, we obtain the asymptotic bound δ <
(

r−1
r+1

) 3
2

. From Table 3, we discover that our bound is

better for r � 4.

Now we are to solve (2). We define the following shift polynomials for a positive integer s,

f̃i1,i2(x1, x2) = (x1 + a1)
i1(x2 + a2)

i2Nmax(s−i1−i2,0),

where |x1| < X1 and |x2| < X2. All polynomials f̃i1,i2(x1, x2) share the common root (d̃1, d̃2) modulo

ps(r−1). The basis matrix construction is similar and we skip it. Assuming X1 = Nγ1 and X2 = Nγ2 , we

obtain the condition,

γ1γ2 <

(
r − 1

r + 1

)3

.

4 Experimental results

In this section, we state some experimental results to show the performance of our method. We did

several experiments to check if the assumption holds. These experiments were performed under Ubuntu

15.04 running on a computer with Intel(R) Core(TM) i5 M 450 CPU 2.40 GHz, 2 GB RAM and 3 MB

Cache. We carried out the experiments by using the LLL implementation available in Shoup’s NTL

library. The numbers used in each experiment were chosen uniformly at random.

We choose r = 2, 3, 4, 5 and s = 1, 2 for the experiments, and the dimension of the lattice is denoted

by “ld” in Table 4. “sp” is the number of suitable polynomials outputted by the LLL algorithm. In the
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Table 4 Experimental results on δ1 and δ2 for various r

r s N (bits) δ1 δ2 ld sp LLL time (s)

2 1 900 0.100 0.100 10 9 0.096

2 1 900 0.124 0.125 6 4 0.104

3 2 1000 0.260 0.260 10 9 14.881

3 2 1000 0.298 0.298 10 9 15.436

4 2 2000 0.350 0.355 10 9 46.144

4 2 2000 0.397 0.400 10 7 34.178

5 2 1800 0.388 0.392 10 9 19.956

5 2 1800 0.435 0.442 10 9 17.128

5 2 1800 0.480 0.495 6 5 21.756

experiments, we always obtain more than two independent polynomials g1, g2 from the output. Thus,

we can solve the common root by the Gröbner basis computations.

While the modulus gets larger, we need more time for the LLL algorithm. For the purpose of success-

fully extracting the common root, one would better put a bit more polynomials into the Gröbner basis

computations. Since we apply a lattice of lower dimension to show the performance of our attacks, the

results are some bits away from the asymptotic bound. This requires optimized cryptanalysis and more

efficient lattice reduction algorithms.

5 Conclusion

We show that we can perform lattice-based attacks on Prime Power RSA with two private exponents.

Suppose that we know e ≈ N , d < N δ1 , and d < N δ2 . If δ1δ2 <
(

r−1
r+1

)3

holds, it is insecure.

Our work is an application of Coppersmith’s techniques and also Takayasu and Kunihiro’s better lattice

constructions. We apply it to solve bivariate modular polynomials and further extend our method to

partial key exposure attacks. However, the theoretical results are still heuristic unless Assumption 1 is

confirmed. So a way to handle this heuristic assumption is still an open problem.
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