
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

March 2016, Vol. 59 032108:1–032108:10

doi: 10.1007/s11432-015-5325-7

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

Generalized cryptanalysis of RSA
with small public exponent

Mengce ZHENG, Honggang HU* & Zilong WANG

Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences (CAS), School of
Information Science and Technology, University of Science and Technology of China, Hefei 230027, China

Received September 4, 2015; accepted December 27, 2015; published online January 15, 2016

Abstract In this paper, we demonstrate that there exist weak keys in the RSA public-key cryptosystem with

the public exponent e = Nα � N0.5. In 1999, Boneh and Durfee showed that when α ≈ 1 and the private

exponent d = Nβ < N0.292, the system is insecure. Moreover, their attack is still effective for 0.5 < α < 1.875.

We propose a generalized cryptanalytic method to attack the RSA cryptosystem with α � 0.5. For c = � 1−α
α

�
and eγc ≡ d (mod ec), when γ, β satisfy γ < 1+ 1

c
− 1

2αc
and β < αc+ 7

6
−αγc− 1

3

√
6α+ 6αc+ 1− 6αγc, we can

perform cryptanalytic attacks based on the LLL algorithm. The basic idea is an application of Coppersmith’s

techniques and we further adapt the technique of unravelled linearization, which leads to an optimized lattice.

Our advantage is that we achieve new attacks on RSA with α � 0.5 and consequently, there exist weak keys in

RSA for most α.
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1 Introduction

The RSA cryptosystem [1] plays an important role in the area of information security due to its popularity.

Many researchers have studied its vulnerability in various cases such as small public exponent [2–4],

small private exponent [5–8], small private CRT-exponent [9–12], partial key exposure [13–17], etc. Since

Coppersmith introduced a new method of finding small roots of modular equations [2, 3], its variations

have been widely used in the field of cryptanalysis of RSA, of which the most well-known and useful one

is Boneh-Durfee attack [6, 7].

In the case of RSA, the modulus N = pq is the product of two primes with the same bit length. (N, e)

denotes the public key and (p, q, d) denotes the private key. As we know, the main equation of RSA is

ed ≡ 1 (mod φ(N)), where φ(N) is Euler’s totient function. Since φ(N) = (p − 1)(q − 1), the following

relation for some integers y exists,

ed+ y((N + 1)− (p+ q)) = 1. (1)

Eq. (1) can be transformed into y(A+ z) ≡ 1 (mod e) for A = N + 1 and z = −(p+ q).
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Throughout the paper we write e = Nα and d = Nβ. On one hand, we have |y| < de−1
φ(N) ≈ Nα+β−1

by (1). On the other hand, it is expected to be secure when p < q < 2p. So it implies that p <
√
N and

q < 2
√
N . Similarly, we have |z| < 3N

1
2 . In the common case, we take α ≈ 1 and ignore the constants.

Hence the problem is to find integers y and z satisfying the following modular equation

y(A+ z)− 1 ≡ 0 (mod e), (2)

where |y| < Nα+β−1 and |z| < N
1
2 .

Boneh and Durfee showed that for β < 1−
√
2
2 ≈ 0.292, the RSA cryptosystem is insecure. Moreover,

for 0.5 < α < 1.875, they still achieved good results. Unfortunately, Boneh-Durfee attack does not work

any more for α � 0.5. To improve the bound of α, Luo et al. [18] studied the special case of d > e.

They showed that it is insecure when 0.258 � α � 0.854 and some other conditions are satisfied. We

briefly mention their method from which our new improvement is derived. Taking x ≡ d (mod e) and

we assume x ≈ eγ = Nαγ . Then we obtain a new relation similar to (2) from (1) by replacing d with x,

ex+ y(A+ z) ≡ 1 (mod e2). Now the problem turns to finding integers x, y, and z satisfying

ex+ y(A+ z)− 1 ≡ 0 (mod e2), (3)

where |x| < Nαγ , |y| < Nα+β−1, and |z| < N
1
2 .

However, their attack also fails for α < 0.258. Because a small public exponent is usually used in

practice, we generalize the former attack to find more weak keys in RSA for α � 0.5. In order to achieve

a much better bound of α, we firstly focus on the situation when e decreases and let x ≡ d (mod ec) for

c = � 1−α
α �. It means that we round down c to the integer portion of 1−α

α . Assume that x ≈ eγc = Nαγc

and hence the following trivariate modular equation that is similar to (3) exists,

ex+ y(A+ z)− 1 ≡ 0 (mod ec+1), (4)

where |x| < Nαγc, |y| < Nα+β−1, and |z| < N
1
2 .

Secondly, we adapt the technique of unravelled linearization [19–21] to optimize the above modular

equation. This technique can further improve the bound of β and reduce the dimension of the lattice

at the same time. We glue the monomials yz and 1 together and denote (yz − 1) by a new variable u.

Hence we obtain the optimized linear modular equation,

ex+Ay + u ≡ 0 (mod ec+1), (5)

where |x| < Nαγc, |y| < Nα+β−1, and |u| < Nα+β− 1
2 .

The rest of the paper is organized as follows: We review preliminaries and state basic results from

lattice reduction theory in Section 2. In Section 3, the method of taking x ≡ d (mod ec) for c = � 1−α
α �

and α � 0.5, which is the foundation of our work will be described. In Section 4, we use the technique of

unravelled linearization to obtain a larger bound of β and give experimental results. The paper concludes

in Section 5.

2 Preliminaries

A lattice L spanned by b1, . . . , bm, which are linearly independent vectors in R
n is the set of all integer

linear combinations of these vectors and (b1, . . . , bm) is called a basis of L. m is called the dimension of

the lattice and it is called full-rank if m = n. L can be denoted by

L(b1, . . . , bm) =

{
m∑
i=1

zibi|zi ∈ Z

}
.

For i = 1, . . . ,m, we regard each vector bi as a row vector and they generate the m × n matrix B.

Thus the determinant of lattice L is defined as det(L) = √
det(BBT). We have det(L) = det(B) when
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L is full-rank and it implies that B is a square matrix. It can be easily inferred that different bases

of a lattice do not change its determinant. Therefore, we provide another definition of the determinant

det(L) =
∏m

i=1 ‖b∗i ‖, where b∗1, . . . , b
∗
m are derived from Gram-Schmidt orthogonalization to the basis

(b1, . . . , bm), and ‖ · ‖ denotes the Euclidean norm of a vector.

The LLL algorithm proposed by Lenstra, Lenstra, and Lovász [22] is widely used for many applications

due to its efficient results. We provide the following substratal lemma about the running results of the

LLL algorithm from their paper.

Lemma 1 (LLL). Let L be a lattice spanned by a basis (b1, b2, . . . , bm). The LLL algorithm gives an

output of a reduced basis (v1, v2, . . . , vm) of L, that satisfies
1. ‖vi‖2 � 2j−1‖v∗j ‖2, 1 � i � j � m,

2. ‖v1‖ � 2
m−1

4 det(L) 1
m .

We also can compute the bounds of other vectors in the LLL-reduced basis except v1 in the Euclidean

norm. We show the following lemma for a basis (b1, b2, · · · , bm) of L and an auxiliary parameter b∗min =

mini ‖b∗i ‖.
Lemma 2. Let L be a lattice spanned by a basis (b1, b2, . . . , bm) and suppose that b∗min � 1. The LLL

algorithm outputs a reduced basis (v1, v2, . . . , vm) of L, and vi satisfies

‖vi‖ � 2
m+i−2

4 det(L) 1
m+1−i .

Proof. We have ‖v∗i ‖ � b∗min � 1. By the first part of Lemma 1, for 2 � i � m we have

‖vi‖2(m+1−i) �
m∏
j=i

2j−1‖v∗j ‖2 = 2
(m+i−2)(m+1−i)

2 · det(L)2∏i−1
j=1 ‖v∗j ‖2

� 2
(m+i−2)(m+1−i)

2 det(L)2.

Thus combining it with the second part of Lemma 1 for i = 1 directly leads to Lemma 2.

We only need i = 1, 2, 3 in Lemma 2, namely ‖v1‖, ‖v2‖, ‖v3‖ � 2
m+1

4 det(L) 1
m−2 , and it is sufficient

for our application. The following lemma presented by Howgrave-Graham [4] gives a judging condition

when the roots of a modular equation in a sufficiently small norm are also roots over the integers.

Then we can combine Lemma 2 with Lemma 3 to solve a modular equation. To a given polynomial

g(x, y, z) =
∑

i,j,k ai,j,kx
iyjzk, its norm is defined by ‖g(x, y, z)‖2 = ∑

i,j,k |ai,j,k|2.
Lemma 3 (Howgrave-Graham). Let g(x, y, z) =

∑
i,j,k ai,j,kx

iyjzk ∈ Z[x, y, z] be a polynomial that

is a sum of most m monomials and g(xX, yY, zZ) =
∑

i,j,k ai,j,kX
iY jZkxiyjzk for given X , Y , and Z.

Suppose that

1. g(x0, y0, z0) ≡ 0 (mod R), where |x0| < X, |y0| < Y, and |z0| < Z,

2. ‖g(xX, yY, zZ)‖ < R√
m
.

Then the equation also holds over the integers, namely g(x0, y0, z0) = 0.

Proof. By applying Cauchy inequality, we know that

|g(x0, y0, z0)| =
∣∣∣∣∣
∑
i,j,k

ai,j,kx
i
0y

j
0z

k
0

∣∣∣∣∣ <
∣∣∣∣∣
∑
i,j,k

ai,j,kX
iY jZk

∣∣∣∣∣ �
∑
i,j,k

1 · ∣∣ai,j,kX iY jZk
∣∣

�
√
m · ‖g(xX, yY, zZ)‖ < R,

and combine it with the first part, by which we obtain g(x0, y0, z0) = 0.

3 Solving trivariate modular equations

According to Coppersmith’s techniques, the basic idea for finding small roots of modular equations is

to reduce this problem to finding roots over the integers. To do so, we construct a set of polynomials

with a common root modulo ec+1. The extreme case that d < N1−α occurs with negligible probability,

so we have d > ec for taking c = � 1−α
α �. Then we begin to search an integer linear combination of
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the constructed polynomials’ coefficient vectors by the LLL algorithm and its norm is expected to be

sufficiently small.

To solve (4), We define f(x, y, z) = ex + y(A + z) − 1, and it turns to finding integers (x0, y0, z0)

satisfying the following trivariate modular equation,

f(x0, y0, z0) ≡ 0 (mod ec+1),

where |x0| < Nαγc, |y0| < Nα+β−1, and |z0| < N
1
2 .

We start with the above trivariate modular equation. As described previously, we need to define suitable

polynomials that share the common root (x0, y0, z0) in order to obtain an integer linear combination.

Therefore, we define the polynomials for some positive integers s and t that will be determined later,

gi,j,k(x, y, z) = xiyjfke(c+1)(s−k) for i+ j + k = r = 0, . . . , s,

hi,j,k(x, y, z) = xizjfke(c+1)(s−k) for j = 1, . . . , t, and i+ k = r = 0, . . . , s.

The above symbol r is the sum of the exponents and we apply r to simply distinguish the blocks in the

constructed matrix. We further explain the meaning of gi,j,k and hi,j,k. i+ j + k = r = 0, . . . , s implies

that i = 0, . . . , s, j = 0, . . . , s − i, and k = 0, . . . , s − i − j. Similarly, i + k = r = 0, . . . , s implies that

i = 0, . . . , s, and k = 0, . . . , s− i.

It is obvious that (x0, y0, z0) is the common root of all the polynomials gi,j,k and hi,j,k. Afterwards,

we begin to search an integer linear combination of all gi,j,k(xX, yY, zZ) and hi,j,k(xX, yY, zZ) by the

LLL algorithm and ensure that its norm is sufficiently small in order to meet the conditions in Lemma 3.

Here we know that X = Nαγc, Y = Nα+β−1, and Z = N
1
2 . However, there is a slight difference that we

take e(c+1)s as the modulus. Then we build a lattice L spanned by the corresponding coefficient vectors

and use the LLL algorithm to find a small norm vector that will yield a small norm polynomial. Lattice

L can be represented by a square matrix whose rows are the polynomials’ coefficient vectors.

We divide the matrix into two big blocks G, H and the corresponding coefficient vectors derived from

gi,j,k and hi,j,k are contained. The following three restrictions are provided when we construct the matrix

that generates L:
1. G blocks are set higher than H blocks. Each monomial that appears in gi,j,k and hi,j,k is considered

to be a component of the row vector and arrayed in an appropriate order. As each row vector introduces

a new monomial according to the following two restrictions, the order of these monomials is the order of

the occurrence of each new monomial.

2. In G blocks, each row vector is denoted by the triple (i, j, k). Moreover, we divide G into several

small blocks (between two horizontal lines in Table 1) according to increasing r’s. In each small block

with a fixed r, we arrange (i, j, k) with larger i’s and smaller k’s to appear in higher rows.

3. In H blocks, each row vector is also denoted by the triple (i, j, k). Moreover, we divide H into

several small blocks (also between two horizontal lines in Table 1) according to increasing t’s and r’s. We

notice that r is different from that in G blocks. In each small block with fixed t and r, we arrange (i, j, k)

with smaller j’s and smaller k’s to appear in higher rows.

A simple example is shown in Table 1 and other non-zero entries are denoted by ∗.
To the parameters s and t, we assume t = τs for easy calculation. Then we can compute the dimension

of the full-rank lattice, which is denoted by m. After that, our task is to compute the determinant of

L. Since it is a lower triangular square matrix, we can easily compute the determinant by counting the

numbers of X , Y , Z, and E in the diagonal entries, respectively.

m =

s∑
r=0

r∑
i=0

r−i∑
j=0

1 +

t∑
j=1

s∑
r=0

r∑
i=0

1 =

(
s+ 3

3

)
+ t ·

(
s+ 2

2

)
=

1 + 3τ

6
s3 + o(s3),

Xn =

s∑
r=0

r∑
i=0

i

r−i∑
j=0

1 +

t∑
j=1

s∑
r=0

r∑
i=0

i =

(
s+ 3

4

)
+ t ·

(
s+ 2

3

)
=

1 + 4τ

24
s4 + o(s4),
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Table 1 A simple example with s = 2, t = 1 for E = ec+1

1 x y yz x2 xy y2 xyz y2z y2z2 z xz yz2 x2z xyz2 y2z3

G(0, 0, 0) E2

G(1, 0, 0) E2X

G(0, 1, 0) E2Y

G(0, 0, 1) * * * EY Z

G(2, 0, 0) E2X2

G(1, 1, 0) E2XY

G(0, 2, 0) E2Y 2

G(1, 0, 1) * * * EXY Z

G(0, 1, 1) * * * EY 2Z

G(0, 0, 2) * * * * * * * * * Y 2Z2

H(0, 1, 0) E2Z

H(1, 1, 0) E2XZ

H(0, 1, 1) * * * EY Z2

H(2, 1, 0) E2X2Z

H(1, 1, 1) * * * EXY Z2

H(0, 1, 2) * * * * * * * * * Y 2Z3

Yn =

s∑
r=0

r∑
j=0

j

r−j∑
i=0

1 +

s∑
r=0

r∑
k=0

k

r−k∑
i=0

1 +

t∑
j=1

s∑
r=0

r∑
k=0

k = 2 ·
(
s+ 3

4

)
+ t ·

(
s+ 2

3

)
=

1 + 2τ

12
s4 + o(s4),

Zn =

s∑
r=0

r∑
k=0

k

r−k∑
i=0

1 +

t∑
j=1

j

s∑
r=0

r∑
i=0

i+

t∑
j=1

s∑
r=0

r∑
k=0

k =

(
s+ 3

4

)
+

(
t+ 1

2

)
·
(
s+ 2

2

)
+ t ·

(
s+ 2

3

)

=
1 + 6τ2 + 4τ

24
s4 + o(s4),

En =

s∑
r=0

r∑
k=0

(s− k)

r−k∑
i=0

1 +

t∑
j=1

s∑
r=0

r∑
k=0

(s− k) = 3 ·
(
s+ 3

4

)
+ 2t ·

(
s+ 2

3

)
=

3 + 8τ

24
s4 + o(s4).

Consequently we have det(L) = XXnY YnZZnEEn for X = Nαγc, Y = Nα+β−1, Z = N
1
2 , and E = ec+1.

If det(L) < e(m−2)(c+1)s

η for η = 2
(m−2)(m+1)

4 m
m−2

2 , then the norms of v1, v2, and v3 that are the first three

vectors of the output LLL-reduced basis are less than e(c+1)s√
m

. Thus we can apply Lemmas 2 and 3. Once

the conditions in Lemma 3 are satisfied, the corresponding polynomials g1, g2, and g3 ∈ Z(x, y, z) can be

obtained and three equations g1(x, y, z) = 0, g2(x, y, z) = 0, and g3(x, y, z) = 0 hold. Then we compute

their resultants g4(y, z) = Res(g1, g2), g5(y, z) = Res(g1, g3), and g6(z) = Res(g4, g5).

Our method relies on the following heuristic assumption for computations with multivariate equations

similar to Boneh-Durfee attack.

Assumption 1. g1, g2, and g3 outputed by our lattice-based method are algebraically independent.

Although the polynomials g1, g2, and g3 derived from the LLL algorithm are linearly independent, they

may have a common factor. Assumption 1 ensures that we can compute the common root. Additionally,

we can easily compute it by known numerical methods. Furthermore, it implies that the run time of

computing the common root is negligible compared to the whole lattice-based construction. Thus if

Assumption 1 is confirmed, we can solve g6(z) = 0 and obtain −(p+ q), which leads to the factorization

of N .

Now we estimate β and γ for a given α and corresponding c. Since η is negligible compared to

e(m−2)(c+1)s when taking s → ∞, its effect can be ignored. Thus it indicates that the following inequality
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holds from above,

αγcXn + (α+ β − 1)Yn +
1

2
Zn + α(c+ 1)En < α(m− 2)(c+ 1)s.

By taking s → ∞, it can be simplified to

6τ2 + τ(8αγc+ 8β − 8αc− 4) + 2αγc+ 2α+ 4β − 2αc− 3 < 0. (6)

The value of the left part of (6) reaches its minimum when we take τ = 2αc+1−2αγc−2β
3 . And then we

put it in to obtain the minimum value of the left part,

− 8

3
β2 +

4

3
(4αc+ 5− 4αγc)β + 2αγc+ 2α− 2αc− 3− 2

3
(2αγc− 2αc− 1)2 < 0.

Then we have

β < αc+
5

4
− αγc−

√
3

4

√
4α+ 4αc+ 1− 4αγc. (7)

For the case when we take c = 1, this solution is same as that in [18].

As we compute the bounds of β and γ, the following additional conditions are considered: 1− α < β,

0 � 2αc+1−2αγc−2β, and 0 � 4α+4αc+1−4αγc. Thus we have 1−α < β � αc−αγc+ 1
2 . Combine

it with (7) and then we obtain the bounds of β and γ,

β < αc+
5

4
− αγc−

√
3

4

√
4α+ 4αc+ 1− 4αγc,

γ < 1 +
1

c
− 1

2αc
.

We show the bounds of β and γ with particular α compared with the results obtained by the optimized

linear modular equation in next section. Therefore, we observe that RSA with e � N0.5 is vulnerable to

lattice-based attacks for ideal conditions.

4 Solving optimized linear modular equations

In this section, we focus on (5) that is optimized by unravelled linearization. The effect of the new method

is to capture the sublattice structure of the lattice constructed in the fundamental attack in Section 3.

Hence similar to Section 3, we also define the following polynomial f̄(x, y, u) = ex+Ay+ u, and it turns

to finding integers (x0, y0, u0) satisfying the following linear modular equation,

f̄(x0, y0, u0) ≡ 0 (mod ec+1),

where |x0| < Nαγc, |y0| < Nα+β−1, and |u0| < Nα+β− 1
2 .

Now we define suitable polynomials that share a common root in order to obtain an integer linear

combination. To do so, we define the polynomials for positive integers s and t (t � s), which will be

determined later,

ḡi,j,k(x, y, u) = xiyj f̄ke(c+1)(s−k) for i+ j + k = r = 0, . . . , s,

h̄i,j,k(x, z, u) = xizj f̄ke(c+1)(s−k) for j = 1, . . . , t, and i+ k = r =
⌊s
t

⌋
j, . . . , s.

Since u0 = y0z0 − 1, (x0, y0, u0) is equivalent to (x0, z0, u0). They are the common roots that we need

to solve. We then apply the LLL algorithm to search an integer linear combination of ḡi,j,k(xX, yY, uU)

and h̄i,j,k(xX, zZ, uU). To do so, we build a lattice spanned by the corresponding coefficient vectors. The

lattice can be represented by a matrix whose rows are the corresponding polynomials’ coefficient vectors.

As f turns to f̄ , we denote U = eα+β− 1
2 while X , Y , Z, and E stay the same. The above example shown

in Table 1 turns to be the following matrix in Table 2 and other non-zero entries are denoted by ∗ as

well.
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Table 2 The same example with s = 2, t = 1 for E = ec+1 by taking u = yz − 1

1 x y u x2 xy y2 xu yu u2 x2z xzu zu2

Ḡ(0, 0, 0) E2

Ḡ(1, 0, 0) E2X

Ḡ(0, 1, 0) E2Y

Ḡ(0, 0, 1) * * EU

Ḡ(2, 0, 0) E2X2

Ḡ(1, 1, 0) E2XY

Ḡ(0, 2, 0) E2Y 2

Ḡ(1, 0, 1) * * EXU

Ḡ(0, 1, 1) * * EY U

Ḡ(0, 0, 2) * * * * * U2

H̄(2, 1, 0) E2X2Z

H̄(1, 1, 1) * * * EXZU

H̄(0, 1, 2) * * * * * * * * ZU2

The method to divide the matrix into two blocks Ḡ and H̄ is alike, so we omit it. We observe that

the optimized matrix is still a lower triangular square matrix and hence it generates a full-rank lattice.

A detailed analysis will be given in the appendix. To the parameters s and t, we assume t = τs and

� s
t � = 1

τ for simplicity. Hence, we compute the dimension m̄ and the numbers of exponents of X , Y , Z,

U , and E elements on the diagonal, respectively.

m̄ =

s∑
r=0

r∑
i=0

r−i∑
j=0

1 +

t∑
j=1

s∑
r=j/τ

r∑
i=0

1 =
1 + 2τ

6
s3 + o(s3),

X̄n =

s∑
r=0

r∑
i=0

i

r−i∑
j=0

1 +

t∑
j=1

s∑
r=j/τ

r∑
i=0

i =
1 + 3τ

24
s4 + o(s4),

Ȳn =
s∑

r=0

r∑
j=0

j

r−j∑
i=0

1 =
1

24
s4 + o(s4),

Z̄n =

t∑
j=1

j

s∑
r=j/τ

r∑
i=0

i =
τ2

8
s4 + o(s4),

Ūn =

s∑
r=0

r∑
k=0

k

r−k∑
i=0

1 +

t∑
j=1

s∑
r=j/τ

r∑
k=0

k =
1 + 3τ

24
s4 + o(s4),

Ēn =

s∑
r=0

r∑
k=0

(s− k)

r−k∑
i=0

1 +

t∑
j=1

s∑
r=j/τ

r∑
k=0

(s− k) =
3 + 5τ

24
s4 + o(s4).

Now we estimate β and γ for a given α and corresponding c. Follow the analysis in Section 3 and thus

the following inequality holds,

αγcX̄n + (α+ β − 1)Ȳn +
1

2
Z̄n + (α + β − 1

2
)Ūn + α(c + 1)Ēn < α(m− 2)(c+ 1)s.

By taking s → ∞, it can be simplified to

3τ2 + τ(6αγc+ 6β − 6αc− 3) + 2αγc+ 2α+ 4β − 2αc− 3 < 0. (8)

The value of the left part of (8) reaches its minimum when we take τ = 2αc+1−2αγc−2β
2 . Then we plug it

in to obtain the minimum value of the left part,

− 3β2 + (6αc+ 7− 6αγc)β + 2αγc+ 2α− 2αc− 3− 3

4
(2αγc− 2αc− 1)2 < 0.
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Table 3 Comparison with previous results on the theoretical bounds of β and γ with particular α

α c γmax βmin βγ=0
max of Sect. 3 βγ=0

max of Sect. 4 βγ=0
max of [18]

0.01 99 0.505 0.99 1.272 1.275 —

0.05 19 0.526 0.95 1.232 1.235 —

0.15 5 0.533 0.85 1.071 1.073 —

0.25 3 0.666 0.75 1.032 1.035 0.75

0.3 2 0.666 0.7 0.921 0.923 0.752

0.4 1 0.75 0.6 0.763 0.764 0.763

0.5 1 1 0.5 0.782 0.785 0.782

Then we have

β < αc+
7

6
− αγc− 1

3

√
6α+ 6αc+ 1− 6αγc. (9)

Similarly, we consider 1−α < β, 0 � 2αc+1− 2αγc− 2β � 2, and 0 � 6α+6αc+1− 6αγc. Thus we

know that 1− α < β � αc− αγc+ 1
2 . Combine it with (9) and then we obtain the bounds of β and γ,

β < αc+
7

6
− αγc− 1

3

√
6α+ 6αc+ 1− 6αγc,

γ < 1 +
1

c
− 1

2αc
.

Table 3 shows the bounds of β and γ with particular α. The comparison between our results and

previous results in [18] is also showed in Table 3. Thus we observe that the bound of β derived from our

new method with unravelled linearization is larger than that in Section 3. Moreover, we point out that

this new method can reduce the dimension of the lattice from m = s3+3ts2

6 to m̄ = s3+2ts2

6 . As s and t

become larger, it can significantly simplify the amount of calculation in the LLL algorithm.

We did several experiments to check if the assumption holds. These experiments were performed under

Ubuntu 14.04 running on a computer with Intel(R) Core(TM) i5-3210M CPU 2.50 GHz, 3 GB RAM and

3 MB Cache. We carried out the experiments by using the LLL implementation available in the NTL

library. The numbers used in each experiment were chosen uniformly at random and the previously

mentioned conditions were satisfied.

When we choose s = 2 and t = 1, the dimension of the lattice is 13. It takes 2.852 s to run the LLL

implementation for a 1024 bit modulus.

When we choose s = 3 and t = 1, the dimension of the lattice is 24. It takes 1108.37 s to run the LLL

implementation for a 1024 bit modulus. We obtain three independent polynomials g1(x, y, z), g2(x, y, z),

and g3(x, y, z) from the output. Then we can solve the common root by computing the resultants and

they are the desired correct results. Although we cannot prove that our attack always succeeds, our

experiments confirm Assumption 1.

5 Conclusion

We show that in some circumstances we can perform lattice-based attacks on the RSA cryptosystem with

the public exponent e � N0.5. We note that e = Nα, d = Nβ , and eγc ≡ d (mod ec) for c = � 1−α
α �, if

γ < 1 + 1
c − 1

2αc and β < αc+ 7
6 − αγc− 1

3

√
6α+ 6αc+ 1− 6αγc hold, RSA may be insecure.

Our work is an application of Coppersmith’s techniques and also an extension of Boneh-Durfee attack.

We apply it to trivariate modular polynomials and further improve the bounds by unravelled linearization,

which can be used to disclose the hidden sublattice structure of the original lattice. However the results

of our method are still heuristic unless Assumption 1 is confirmed. So a way to handle this heuristic

assumption is still an open problem.
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Appendix A Detailed analysis of t � s

In order to prove that the basis matrix still keeps the triangular and square structure, we analyse its row vectors (mainly

H̄(i, j, k)). Since u = yz − 1, we can replace each yz by u + 1. It is easy to conclude that each Ḡ(i, j, k) introduces a new

monomial xiyjuk for particular i, j, k and each H̄(i, j,0) introduces a new monomial xizj for particular i, j. Then we focus

on whether or not each H̄(i, j, k) introduces a new monomial xizjuk as well.

For the sake of convenience, we omit the multiplicative factors because they do not influence the set of monomials

(components of row vectors in the matrix). Let us first think about an arbitrary H̄(i′, j′, k′). We know that four families

of monomials appear before H̄(i′, j′, k′).
1. xiyjuk for i+ j + k = 0, . . . , s in Ḡ blocks,

2. xizjuk for 1 � j � j′ − 1, i+ k = � s
t
�j, . . . , s in H̄ blocks,

3. xizjuk for j = j′, i+ k = � s
t
�j′, . . . , i′ + k′ − 1 in H̄ blocks,
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4. xizjuk for j = j′, i+ k = i′ + k′, k < k′ in H̄ blocks.

Since f̄(x, y, u) = ex + Ay + u, we can expand xi′zj
′
f̄k′

. Ignoring its multiplicative factors and binomial coefficients,

H̄(i′, j′, k′) consists of monomials such as xi′+k1yk2zj
′
uk3 for k1 + k2 + k3 = k′. We offer the conclusion that H̄(i′, j′, k′)

introduces a new monomial xi′zj
′
uk′

(k1 = k2 = 0, k3 = k′) and meanwhile others (k3 < k′) already appear in the matrix.

We discuss it in the following three cases.

1. When 1 � j′ � k2, we rewrite that xi′+k1yk2zj
′
uk3 = xi′+k1(u + 1)j

′
yk2−j′uk3 and this type of monomials that

only consist of three variables x, y, and u appear in Ḡ blocks. Since the maximal sum of the exponents of x, y, and u is

i′ + k1 + j′ + k2 − j′ + k3 = i′ + k′ � s, it implies that these monomials already appear in Ḡ blocks.

2. When 1 � k2 < j′, we have xi′+k1yk2zj
′
uk3 = xi′+k1(u+1)k2zj

′−k2uk3 instead. Since the exponent of z is (j′ − k2)

that is certainly less than j′, the maximal sum of the exponents of x and u is i′ + k1 + k2 + k3 = i′ + k′ � s, we only require

that the minimal sum of the exponents of x and u satisfies i′ + k′ − k2 � � s
t
�(j′ − k2). Therefore, we take the minimum

value of the left side (k2 = j′ − 1), and then obtain � s
t
�j′ − (j′ − 1) � � s

t
�(j′ − (j′ − 1)). Our construction is doable if

� s
t
� � 1 holds. We thus obtain s � t.

3. When k2 = 0, we have xi′+k1yk2zj
′
uk3 = xi′+k1zj

′
uk3 instead. Since the exponent of z is exactly j′ and the sum of

the exponents of x and u is i′ + k1 + k3 = i′ + k′, we look at k3. We know that k3 < k′, so these monomials appear in H̄

blocks.

To summarize, the key requirement of the triangular and square structure is t � s. We have noted this condition and

take it into consideration in our method.
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