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RSA (Rivest-Shamir-Adleman) cryptosystem is the most popular asymmetric key crypto-
graphic algorithm used in computer science and information security. Recently, an RSA-like 
cryptosystem was proposed using a novel product that arises from a cubic field connected 
to the cubic Pell equation. The relevant key equation is ed ≡ 1 mod (p2 + p + 1)(q2 + q + 1)

with N = pq. This RSA variant is claimed to be robust against the Wiener’s attack and 
hence the bit-size of the private key could be shorter, namely d < N1/4. In this paper, we 
explore the further security analysis and investigate the potential small private exponent 
attack. We show that such RSA variant is particularly vulnerable to the lattice-based
method. To be specific, we can carry out the lattice-based small private exponent attack if 
d < N2−√

2, which is less secure than the standard RSA. Furthermore, we conduct numerical 
experiments to verify the validity of the proposed attack.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

RSA [1] is currently the most widely used public key cryptosystem in the world. In the standard RSA cryptosystem, a 
public modulus N is the product of two large primes p and q of the same bit-size, namely N = pq. The key equation is 
ed ≡ 1 mod ϕ(N), where ϕ(N) = (p − 1)(q − 1) is Euler’s totient function. (N, e) and (p, q, d) are called the public and 
private keys, respectively. In the encryption process, a message string is transformed into an integer m and then encrypted 
as c = me mod N . The decryption process computes cd mod N . As e and d are calculated as exponents in the encryption 
and decryption phases, they are called public and private exponents as well. In this paper, we assume e = Nα , d = Nδ and 
further use two parameters α and δ in the cryptanalysis for simplicity.

The standard RSA scheme has been generalized by various approaches such as modifying the modulus [2] and modifying 
the decryption process [3] to gain a significant speed-up in the practical implementation. Besides, several RSA variants like 
[4,5] have been proposed to be more secure against the broadcast attack [6]. In this paper, we focus on the RSA variant 
based on cubic Pell equation that was proposed in [5]. It defines a novel product that is applied in the encryption and 
decryption processes. We conclude the modified key equation arisen from such RSA variant, which can be written as

ed ≡ 1 mod (p2 + p + 1)(q2 + q + 1). (1)
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Generally, we have 0 < α, δ < 2 as 0 < e, d < (p2 + p + 1)(q2 + q + 1) ≈ N2. Moreover, α and δ can be set to exceed the 
above range for particular security considerations in practice. We introduce the relevant RSA variant and its mathematical 
background below. One may refer to [5] for more details.

This RSA variant was recently proposed by Murru and Saettone. It is related to an interesting definition of product that 
arises from a cubic field connected to the cubic Pell equation. Let F be a field and (t3 − r) be an irreducible polynomial in 
F[t]. We consider the quotient field

A = F[t]/(t3 − r) = {x + yt + zt2 : x, y, z ∈ F}.
A induces a product • between two triples like (x1, y1, z1), (x2, y2, z2) ∈ F3. The product (x1, y1, z1) • (x2, y2, z2) is calcu-
lated as

(x1x2 + (y2z1 + y1z2)r, x2 y1 + x1 y2 + rz1z2, y1 y2 + x2z1 + x1z2).

The norm of an element (x, y, z) is given by N(x, y, z) = x3 + ry3 + r2z3 − 3rxyz. Considering the unitary elements, we 
obtain the cubic Pell curve

C = {(x, y, z) ∈ F3 : x3 + ry3 + r2z3 − 3rxyz = 1},
where x3 + ry3 + r2z3 − 3rxyz = 1 is the more natural cubic Pell equation for a non-cubic integer r. Starting from A, we 
consider the quotient group B =A∗/F∗ with a non-standard product �. The group B can be rewritten as

B = {[m + nt + t2] : m,n ∈ F} ∪ {[m + t] : m ∈ F} ∪ {[1F∗ ]},
where [·] stands for the equivalent set. Fixing an element θ /∈ F , the elements of B can be seen as (m, n) with m, n ∈ F , or 
(m, θ) with m ∈ F , or (θ, θ). Now the group B is

B = (F × F) ∪ (F × {θ}) ∪ ({θ} × {θ}).
The rules for computing the commutative product � in B are defined as follows, where (θ, θ) is the identity.

• (m, θ) � (k, θ) = (mk, m + k);
• (m, n) � (k, θ) =

–
(

mk+r
n+k , m+nk

n+k

)
, n + k 	= 0;

–
(

mk+r
m−n2 , θ

)
, n + k = 0, m − n2 	= 0;

– (θ, θ), otherwise;
• (m, n) � (k, l) =

–
(

mk+(n+l)r
m+k+nl , nk+ml+r

m+k+nl

)
, m + k + nl 	= 0;

–
(

mk+(n+l)r
nk+ml+r , θ

)
, m + k + nl = 0, nk + ml + r 	= 0;

– (θ, θ), otherwise.

The RSA variant scheme is based on the following useful facts. Letting F = Zp and fixing θ = ∞, we have A = G F (p3)

in this case. Thus, B is a cyclic group of order p3−1
p−1 = p2 + p + 1, with respect to a well-defined product �. An analog of 

the little Fermat’s theorem holds.

(m,n)�p2+p+1 ≡ (∞,∞) mod p,

for any m ∈Zp and n ∈ Zp ∪ {∞}. Moreover, the power using the product � can be evaluated through a generalization of 
the Rédei rational functions. When N = pq, for two prime numbers p and q of the same bit-size, it follows from the above 
power computation that

(m,n)�(p2+p+1)(q2+q+1) ≡ (∞,∞) mod N,

which can be seen as an analog of the Euler’s theorem. The proposed public-key cryptosystem in [5] using the product �
is described as follows.

Key Generation. Randomly choose two prime numbers of the same bit-size p, q and compute the modulus N = pq. Ran-
domly choose an integer e such that gcd(e, (p2 + p +1)(q2 +q +1)) = 1 along with a non-cubic integer r in Zp, Zq

and ZN . Compute d such that ed ≡ 1 mod (p2 + p + 1)(q2 + q + 1). The public encryption key is (N, e, r) and the 
corresponding secret decryption key is (p, q, d).
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Encryption. Given a pair of plaintexts m1 and m2 in ZN , they are encrypted by

(c1, c2) ≡ (m1,m2)
�e mod N.

Decryption. Given a pair of ciphertexts c1 and c2 in ZN , the receiver can decrypt them by evaluating

(c1, c2)
�d mod N.

In summary, this RSA variant scheme uses a new group equipped with a non-standard product whose powers can be 
evaluated means of some generalized Rédei functions. The authors claim that the proposed scheme is more secure than 
the standard RSA in broadcast scenarios since the corresponding trapdoor function is not a simple monomial power as in 
the standard RSA. Furthermore, the authors claim that Wiener’s attack [7] is not usable against the proposed RSA variant 
scheme. For the same reason, further attacks exploiting continued fractions also fail in such case. Hence, the private key of 
bit-size less than N1/4 can be used without being affected by Wiener’s attack.

It is interesting to investigate whether the proposed scheme in [5] can be used with a much shorter private exponent in 
theory and in practice as claimed. Surprisingly, we conclude that the RSA variant based on cubic Pell equation is particularly 
vulnerable to the lattice-based small private exponent attack.

We first review several small private exponent attacks below. In 1990, Wiener [7] showed that one can break the stan-
dard RSA scheme when the private key d is less than 1

3 N1/4. This bound was further improved to 1
4√18

N1/4 in [8]. Wiener’s 
attack utilizes the continued fraction approach to deal with the key equation ed = k(p − 1)(q − 1) + 1. If d is small enough, 
k/d will be one of the convergents of the continued fraction expansion of the public rational fraction e/N . Thus, k and d
can be recovered by computing the continued fraction expansion of e/N .

Later in 1999, Boneh and Durfee [9] introduced the small inverse problem and further improved the insecure bound to 
d < N1−√

2/2 using Coppersmith’s lattice-based techniques [10]. The aim of the lattice-based method is to find the small 
roots of the modular equation x(y + A) + 1 ≡ 0 mod e with known A and e. Moreover, Herrmann and May [11] presented 
an elementary method to solve the same equation using the linearization technique that is applied to construct smaller 
dimensional lattices. Though it does not improve the insecure bound, it simplifies the lattice construction and reduces the 
practical consumption. More small private exponent attacks [12–18] and other types of cryptanalyses [19–23] on RSA and 
its variants have been proposed using the lattice-based method.

The small inverse problem is a natural extension of the small private exponent attack on the standard RSA and has been 
studied in [9,24–26]. In 2012, Kunihiro [25] presented a lattice-based method to solve small inverse problems with a higher 
degree. To be specific, for a monic polynomial h(y) of degree κ ≥ 1, integers C and e, a lattice-based algorithm was proposed 
to find all small roots of a bivariate modular equation xh(y) +C ≡ 0 mod e. A similar approach as the linearization technique 
is employed for especially evaluating the lattice determinant. We adapt the lattice-based method in [25] to conduct the 
small private exponent attack on the RSA variant based on cubic Pell equation.

In this paper, we first derive the critical modular equation to be solved from the modified key equation (1). It can be 
rewritten as

ed = k
(
(p + q)2 + (N + 1)(p + q) + N2 − N + 1

)
+ 1.

Thus, we are required to solve a small inverse problem with degree two. The critical modular equation is

x(y2 + ay + b) + 1 ≡ 0 mod e (2)

for a := N + 1 and b := N2 − N + 1 with small roots x := k and y := p + q. We propose the small private exponent attack 
for a general case when using full-size public key e ≈ N2, which is stated below.

Proposition 1. Let N = pq be a modulus of the RSA variant based on cubic Pell equation. Two prime factors p and q are of the same 
bit-size. Let e ≈ N2 be a valid public key and d = Nδ be its corresponding private key such that ed ≡ 1 mod (p2 + p + 1)(q2 + q + 1). 
Then N can be efficiently factored in polynomial time if

δ < 2 − √
2.

It is oblivious that the RSA variant based on cubic Pell equation can be broken in polynomial time for small private key 
d < N2−√

2. Moreover, it indicates that such RSA variant is even more vulnerable than the standard RSA since 2 −√
2 ≈ 0.585

is much greater than 1 − √
2/2 ≈ 0.292 reported in [9]. Concretely, 2 − √

2 is twice of 1 − √
2/2.

The rest of the paper is organized as follows. We review some mathematical facts and useful lemmas of the lattice-
based method in Section 2. In Section 3, we present the small private exponent attack on the RSA variant based on cubic 
Pell equation in detail. In Section 4, we verify the validity of the proposed attack by computer experiments. Finally, we 
conclude the paper in Section 5.
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2. Preliminaries

In this section, we introduce Coppersmith’s techniques [10,27] based on the LLL lattice reduction algorithm [28] and 
summarize a crucial condition for finding the small roots of modular/integer polynomial equations. We briefly explain how 
to solve multivariate modular polynomial equations using the idea of Coppersmith’s techniques. One may refer to [29–31]
for more details.

Problem 1. Let f (x1, . . . , xn) be an irreducible multivariate polynomial defined over Z, which has a small root (x′
1, . . . , x′

n)

modulo a known positive integer such that |x′
1| ≤ X1, . . . , |x′

n| ≤ Xn . The question is to recover the desired root (x′
1, . . . , x

′
n)

in polynomial time under the established upper bounds X1, . . . , Xn .

We start with the lattice theory and the lattice reduction algorithm. A lattice L spanned by linearly independent vectors 
�b1, . . . , �bw ∈Rn is the set of their integer linear combinations, which is denoted by

L(�b1, . . . , �bw) =
{

w∑
i=1

zi�bi : zi ∈Z

}
.

By regarding each �bi as a row/column vector, they generate a lattice basis matrix B . The determinant of L is defined as 
det(L) = √

det(B BT), where BT is a transpose of B . The rank of L is w and we always consider a full-rank lattice for w = n. 
We have det(L) = | det(B)| for a full-rank lattice since B is a square matrix. Moreover, the determinant of a triangular basis 
matrix can be easily estimated as the product of its diagonal entries.

The LLL algorithm proposed by Lenstra, Lenstra and Lovász [28] is practically used for computing approximately short 
reduced vectors due to its efficient running outputs. We provide the following substratal lemma that has been proven in 
[29].

Lemma 1. Let L be a lattice spanned by basis vectors (�b1, . . . , �bw). The LLL algorithm outputs a reduced basis (�v1, . . . , �v w) satisfying

‖�v1‖,‖�v2‖, . . . ,‖�vi‖ ≤ 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i for 1 ≤ i ≤ w

in time polynomial in w and in the bit-size of the entries of the basis matrix.

Howgrave-Graham [32] later refined on Coppersmith’s techniques to propose a succinct lemma, which is used for judging 
if the roots of a modular equation are roots over Z. For a given polynomial h(x1, . . . , xn) = ∑

ai1,...,in xi1
1 · · · xin

n , its norm is 
defined as ‖h(x1, . . . , xn)‖ := √∑ |ai1,...,in |2.

Lemma 2. Let h(x1, . . . , xn) ∈Z[x1, . . . , xn] be an integer polynomial, which is a sum of at most w monomials. Let X1, . . . , Xn and R
be some positive integers. Suppose that

1. h(x′
1, . . . , x

′
n) ≡ 0 mod R, where |x′

1| ≤ X1, . . . , |x′
n| ≤ Xn,

2. ‖h(x1 X1, . . . , xn Xn)‖ < R/
√

w.

Then h(x′
1, . . . , x

′
n) = 0 holds over the integers.

Hence, the root-finding problem in modular polynomial equations can be reduced to the case of that in equation over 
the integers by using Lemma 2. Further combining with Lemma 1, one can solve a given modular equation under a certain 
condition. The main idea of the lattice-based method is to construct a set of shift polynomials modulo R with the common 
root and then reduce them to several integer equations. The basis matrix generating by the shift polynomials’ coefficient 
vectors spans a w-dimensional lattice. One can use the LLL algorithm to obtain short lattice vectors and transform them 
into polynomial equations. If the norms of the polynomials are sufficiently small, the equations hold over the integers.

When one obtains the first � reduced vectors through the LLL algorithm, he/she can extract the solutions if

2
w(w−1)

4(w+1−�) det(L)
1

w+1−� < R/
√

w,

which can be roughly reduced to det(L) < R w when ignoring the lower terms. Eventually, one can efficiently extract the 
common root of the derived integer equations by the Gröbner basis computation [33] or resultant computation.

In summary, we have four steps to solve a multivariate modular polynomial equation using the lattice-based method.

Shift Polynomials. Using f (x1, . . . , xn) and given modulus to generate a collection F of shift polynomials g1(x1, . . . , xn),

. . . , gw(x1, . . . , xn) such that (x′ , . . . , x′
n) is a common root modulo R .
1
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Lattice Generation. Let �bi be a row vector derived from the coefficient vector of gi(x1 X1, . . . , xn Xn) for all 1 ≤ i ≤ w . Hence, 
one can generate the lattice L =

{∑w
i=1 zi�bi : zi ∈Z

}
.

Lattice Reducion. Applying the LLL reduction algorithm on L, one can get the first n many reduced basis vectors 
�v1, . . . , �vn . One can transform the vectors to polynomials h1(x1, . . . , xn), . . . , hn(x1, . . . , xn) sharing the common 
root (x′

1, . . . , x
′
n) over Z.

Root Extraction. If derived integer polynomials hi(x1, . . . , xn) for 1 ≤ i ≤ n are algebraically independent, the equation sys-
tem hi(x1, . . . , xn) = 0 can be solved using the Gröbner basis computation. Hence, one extracts the desired root 
(x′

1, . . . , x
′
n).

We do not mention how to solve integer polynomial equations since it makes use of the essential idea of solving modular 
equations by adding an auxiliary parameter. We further apply the lattice technique introduced in [25], which can make it 
easier to construct a triangular lattice matrix in our attack scenario.

Notice that solving multivariate equations is heuristic because the newly derived polynomials are not guaranteed to 
be algebraically independent. In this paper, we assume that the polynomials derived from the reduced vectors of the LLL 
algorithm are algebraically independent as discussed in the literature of the lattice-based attacks on RSA and its variants. In 
fact, there are barely existing works that contradict this assumption.

Assumption 1. The integer polynomials finally obtained from the lattice-based method are algebraically independent. Thus, 
the common root of the derived polynomial equations can be efficiently recovered by the Gröbner basis computation.

3. Small private exponent attack

We aim to produce the lattice-based attack on the RSA variant based on cubic Pell equation for sufficient small pri-
vate key d, i.e. small private exponent δ. Applying the subtle technique introduced in [25], we solve the crucial modular 
equation (2) and present the small private exponent attack.

We address how to find all small roots of the bivariate modular equation

f (x, y) := x(y2 + ay + b) + 1 ≡ 0 mod e.

Let h(y) := y2 + ay + b = y2 + h̄(y) for h̄(y) := ay + b with a = N + 1 and b = N2 − N + 1. We transform the original 
polynomial f (x, y) into

f (x, y) = xh(y) + 1 = x(y2 + h̄(y)) + 1 = (xy2 + 1) + xh̄(y).

Letting z := xy2 + 1, we have f̄ (x, y, z) := z + xh̄(y). The shift polynomials g[i, j,k](x, y, z) are defined as

g[i, j,k](x, y, z) := xi y j f̄ k(x, y, z)es−k = xi y j(z + xh̄(y))kes−k

for a fixed positive integer s and non-negative integers i, j, k. We denote the set of shift polynomials by F := G ∪H for

G := {g[i, j,k](x, y, z) : (i, j,k) ∈ IG},
H := {g[i, j,k](x, y, z) : (i, j,k) ∈ IH},

where the corresponding index set I := IG ∪ IH is defined by

IG := {(i, j,k) : i = 0, . . . , s; j = 0,1;k = 0, . . . , s − i},
IH := {(i, j,k) : i = 0; j = 2, . . . , �τk� + 1;k = 0, . . . , s},

for a parameter 0 ≤ τ ≤ 1 to be optimized later. The definitions of IG and IH are modified from the original ones in [25].
Let (x, y) = (x0, y0) be a solution of f (x, y) ≡ 0 mod e and z0 := x0 y2

0 + 1, it is easy to see that all the shift polynomials 
g[i, j,k](x, y, z) in F share the common small root (x0, y0, z0) modulo es .

The polynomial order ≺p is defined as g[i, j,k] ≺p g[i′, j′,k′] if

• i + k < i′ + k′; or
• i + k = i′ + k′ and i < i′; or
• i = i′ , k = k′ and j < j′ .

The monomial order ≺m is defined as xi y j zk ≺m xi′ y j′ zk′
if

• i + k < i′ + k′; or
• i + k = i′ + k′ and i < i′; or
139
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Table 1
A toy example of the lattice basis matrix for s = 2 and τ = 1.

1 y x xy z yz y2 z x2 x2 y xz xyz z2 yz2 y2z2 y3z2

g[0,0,0] e2

g[0,1,0] e2Y

g[1,0,0] e2 X
g[1,1,0] e2 XY
g[0,0,1] – – e Z
g[0,1,1] – – – eY Z
g[0,2,1] – – – – eY 2 Z

g[2,0,0] e2 X2

g[2,1,0] e2 X2Y
g[1,0,1] – – e X Z
g[1,1,1] – – – e XY Z
g[0,0,2] – – – – – Z 2

g[0,1,2] – – – – – – – Y Z 2

g[0,2,2] – – – – – – – – – Y 2 Z 2

g[0,3,2] – – – – – – – – – – Y 3 Z 2

• i = i′ , k = k′ and j < j′ .

We can substitute each occurrence of xy2 by the term z − 1. The lattice basis matrix is generated by taking the coef-
ficient vectors of g[i, j,k](xX, yY , zZ) as row vectors, where X, Y and Z denote the upper bounds on the root (x0, y0, z0). 
Additionally, the rows and columns are arranged according to the above orders ≺p and ≺m, which guarantees that the 
lattice basis matrix is triangular (this property has been proven in [25]). Table 1 shows a toy example for two parameters 
s = 2 and τ = 1, where symbols “–” denote the non-zero off-diagonal entries and other off-diagonal entries are 0.

Since e = Nα , d = Nδ and 
√

N/2 < p, q <
√

2N , we can figure out X = Nα+δ−2, Y ≈ N1/2 and Z ≈ XY 2 = Nα+δ−1 when 
omitting small terms compared to N . We are able to compute the lattice determinant, which can be calculated as

det(L) =
∏

(i, j,k)∈I
Xi Y j Zkes−k =

∏
(i, j,k)∈IG

Xi Y j Zkes−k
∏

(i, j,k)∈IH
Xi Y j Zkes−k

=
s∏

i=0

s−i∏
k=0

1∏
j=0

Xi Y j Zkes−k
s∏

k=0

�τk�+1∏
j=2

Y j Zkes−k.

By counting the numbers of X , Y , Z and e appearing in the diagonal entries, we know the contributions of the shift 
polynomials to det(L). We omit the rounding of τk as �τk� is negligible in the asymptotic analysis for sufficiently large s.

We compute the dimension w of the full-rank lattice L and the contributions of the shift polynomials denoted by nX , 
nY , nZ and ne , respectively.

w =
∑

(i, j,k)∈I
1 =

∑
(i, j,k)∈IG

1 +
∑

(i, j,k)∈IH
1 =

s∑
i=0

s−i∑
k=0

1∑
j=0

1 +
s∑

k=0

�τk�+1∑
j=2

1

≈ (s + 1)(s + 2) + τ

2
s(s + 1) = 2 + τ

2
s2 + o(s2),

nX =
∑

(i, j,k)∈I
i =

∑
(i, j,k)∈IG

i +
∑

(i, j,k)∈IH
i =

s∑
i=0

s−i∑
k=0

1∑
j=0

i

≈ 1

3
s(s + 1)(s + 2) = 1

3
s3 + o(s3),

nY =
∑

(i, j,k)∈I
j =

∑
(i, j,k)∈IG

j +
∑

(i, j,k)∈IH
j =

s∑
i=0

s−i∑
k=0

1∑
j=0

j +
s∑

k=0

�τk�+1∑
j=2

j

≈ 1
(s + 1)(s + 2) + τ 2

s(s + 1)(2s + 1) + 3τ
s(s + 1) = τ 2

s3 + o(s3),

2 12 4 6
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nZ =
∑

(i, j,k)∈I
k =

∑
(i, j,k)∈IG

k +
∑

(i, j,k)∈IH
k =

s∑
i=0

s−i∑
k=0

1∑
j=0

k +
s∑

k=0

�τk�+1∑
j=2

k

≈ 1

3
s(s + 1)(s + 2) + τ

6
s(s + 1)(2s + 1) = 1 + τ

3
s3 + o(s3),

ne =
∑

(i, j,k)∈I
(s − k) =

∑
(i, j,k)∈IG

(s − k) +
∑

(i, j,k)∈IH
(s − k) =

s∑
i=0

s−i∑
k=0

1∑
j=0

(s − k) +
s∑

k=0

�τk�+1∑
j=2

(s − k)

≈ 2

3
s(s + 1)(s + 2) + τ

6
s(s − 1)(s + 1) = 4 + τ

6
s3 + o(s3).

Hence, we have det(L) = XnX Y nY ZnZ ene for the above values. Substituting the values of X, Y , Z and e, the lattice determi-
nant det(L) is approximately equal to

N(α+δ−2)
( 1

3 s3+o(s3)
)
N

1
2

(
τ2
6 s3+o(s3)

)
N(α+δ−1)

( 1+τ
3 s3+o(s3)

)
Nα

( 4+τ
6 s3+o(s3)

)
,

which can be simplified into

det(L) = N
( 1

3 (α+δ−2)+ τ2
12 + 1+τ

3 (α+δ−1)+ 4+τ
6 α

)
s3

when omitting the lower order term o(s3). Consider the condition det(L) < R w for R = es , we substitute the values of e
and deduce

R w = ews = N
2+τ

2 αs3
.

Hence, we deal with the exponents in det(L) < R w and obtain

4(α + δ − 2) + τ 2 + 4(1 + τ )(α + δ − 1) + 2(4 + τ )α < 6(2 + τ )α.

It can be simplified into

τ 2 + (4δ − 4)τ + 4α + 8δ − 12 < 0.

The value of the left side reaches its minimum by setting τ = 2 − 2δ and then the inequality becomes

δ2 − 4δ − α + 4 > 0.

Hence, we obtain the final condition

δ < 2 − √
α.

Note that we must have 0 ≤ τ = 2 − 2δ ≤ 1 and hence 1/2 ≤ δ ≤ 1. Combining it with α + δ ≥ 2 and δ < 2 − √
α, we have 

1 ≤ α < 9/4. We discuss more about how to solve the modular equation (2) for other cases like 0 < α < 1 and α ≥ 9/4. The 
optimizing parameter τ is no longer τ = 2 − 2δ when considering other values of α.

For 0 < α < 1, we can infer that δ > 1 and hence τ should be less than 0. In this case, we take τ = 0 and obtain 
δ < (3 − α)/2. Combining it with α + δ ≥ 2, we have 2 − α ≤ δ < (3 − α)/2 leading to α > 1, which contradicts the 
prerequisite 0 < α < 1. Therefore, we cannot solve the modular equation (2) for 0 < α < 1.

For α ≥ 9/4, we can infer that δ < 1/2 and hence τ should be greater than 1. In this case, we take τ = 1 and obtain 
δ < 5/4 − α/3. Combining it with α + δ ≥ 2, we have 2 − α ≤ δ < 5/4 − α/3 leading to α > 9/8, which satisfies the 
prerequisite α ≥ 9/4. Besides, we should ensure 0 < δ < 5/4 − α/3, which can be reduced to α < 15/4. Therefore, we can 
solve the modular equation (2) for 9/4 ≤ α < 15/4 using τ = 1.

Once we extract the common root (x0, y0) = (k, p + q), we can easily factorize N using the value of p + q. The above 
results of our attacks are illustrated in Fig. 1. It is oblivious that we gain a significant finding of the insecure bound on δ
through the lattice-based method. The RSA variant based on cubic Pell equation is not so secure as claimed.

To summarize, we propose the small private exponent attack on the RSA variant based on cubic Pell equation for the 
public key e of an arbitrary bit-size (i.e. an arbitrary value of α) as follows.

Proposition 2. Let N = pq be a modulus of the RSA variant based on cubic Pell equation. Two prime factors p and q are of the same 
bit-size. Let e = Nα be a valid public key and d = Nδ be its corresponding private key such that ed ≡ 1 mod (p2 + p + 1)(q2 + q + 1). 
Then N can be efficiently factored in polynomial time if

δ < 2 − √
α for 1 ≤ α <

9
, or δ <

5 − α
for

9 ≤ α <
15

.

4 4 3 4 4
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Fig. 1. The curves denote the asymptotic insecure bound on δ with respect to various α’s. The gray region indicates the vulnerable attack scenarios of the 
proposed small private exponent attack on the RSA variant based on cubic Pell equation.

Table 2
The experimental results on the proposed small private key attack.

log2 N α log2 N δe log2 N δe s τ w TLLL TGB

1024 2044 439 0.428 3 1 26 0.419 0.100
1024 2047 467 0.456 4 1 40 6.807 0.137
1024 2048 485 0.473 5 1 57 126.737 0.115
1024 2047 496 0.484 6 1 77 3430.796 0.162
1024 2045 504 0.492 7 0.857 93 6149.896 0.146
1024 2045 514 0.501 8 1 126 23610.149 0.093
1024 2047 524 0.511 9 1 155 78149.222 10.715

For the general case when e ≈ (p2 + p + 1)(q2 + q + 1) ≈ N2, we obtain the solvable condition δ < 2 − √
2 as stated in 

Proposition 1 directly from Proposition 2. Note this insecure bound is much higher than that derived in the small private 
exponent attack on the standard RSA. Thus, the RSA variant based on cubic Pell equation is much more vulnerable to attacks 
using the lattice-based method.

4. Experimental results

In this section, we verify the validity of the proposed small private exponent attack on the RSA variant based on cubic 
Pell equation. The experiments are carried out in SageMath1 under Windows 10 running on a laptop with Intel Core i7-
8550U CPU 1.80 GHz. The numbers for generating the concrete parameters of RSA variant instances are chosen at random.

For each numerical experiment, we first generate a 1024-bit RSA modulus N (i.e. log2 N = 1024) with the private key 
d of predetermined bit-size. Then we generate the corresponding public key e according to the modified key equation 
ed ≡ 1 mod (p2 + p + 1)(q2 + q + 1). Moreover, we gradually increase the bit-size of the public key e to achieve greater α
when performing the small private exponent attack.

For conducting the proposed attack, we choose a suitable s with an optimal τ to construct the lattice. The experimental 
results are given in Table 2. The α log2 N-column provides the bit-size of the public key of the generated RSA variant 
instance. The δe log2 N-column provides the bit-size of the private key used in the experiments for our lattice settings, which 
are indicated by the s, τ and w-columns. The δe-column provides the experimental results of the insecure small private 
exponent in our attacks. The respective time consumption (recorded in seconds) of the LLL algorithm and the Gröbner basis 
computation are given in the TLLL and TGB-columns.

During each experiment, we could collect abundant polynomials satisfying the solvable requirements. In other words, 
we could obtain sufficient reduced basis vectors after running the lattice reduction algorithm. The running time of the LLL 
algorithm heavily depends on the lattice dimension and the entries of the lattice basis matrix. As showed in Table 2, the 
running time gets longer as the above parameters get larger. The polynomial equations sharing the common root over the 
integers are derived from the vector-to-polynomial transformation of the outputted lattice basis vectors.

We concisely comment on the root-extraction procedure of the proposed attack. We put the derived polynomials into 
the Gröbner basis computation and obtain p + q that leads to the factorization of N . We successfully recover the common 
root in all the experiments, where we generate the RSA variant instances using the parameters showed in Table 2. The time 
consumption of the Gröbner basis computation is much lower than that for running the LLL algorithm. Unfortunately, the 
experimental results are still a few bits away from the asymptotic insecure bound due to the restricted computing resource. 

1 We use the Sage Mathematics Software System (Version 8.0) that is available at https://www.sagemath .org.
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If we apply the lattice-based method with much higher-dimensional lattices, the practical attack results can be further 
improved.

5. Conclusions

We propose an effective lattice-based attack on the RSA variant based on cubic Pell equation using Coppersmith’s tech-
niques in this paper. Though such RSA variant is designed using complicated product and power computations, the key 
equation ed ≡ 1 mod (p2 + p + 1)(q2 + q + 1) is quite simple. We focus on how to solve the bivariate modular equation 
x(y2 + ay + b) + 1 ≡ 0 mod e and present the small private exponent attack on this RSA variant. Further attack results for 
the public key e of arbitrary bit-size are also presented and illustrated. We justify the validity of the proposed small private 
exponent attack by numerical computer experiments.
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