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Abstract: The Rivest–Shamir–Adleman (RSA) cryptosystem is currently the most influential and
commonly used algorithm in public-key cryptography. Whether the security of RSA is equivalent
to the intractability of the integer factorization problem is an interesting issue in mathematics
and cryptography. Coron and May solved the above most fundamental problem and proved the
polynomial-time equivalence of computing the RSA secret key and factoring. They demonstrated
that the RSA modulus N = pq can be factored in polynomial time when given RSA key information
(N, e, d). The CRT-RSA variant is a fast technical implementation of RSA using the Chinese
Remainder Theorem (CRT), which aims to speed up the decryption process. We focus on the
polynomial-time equivalence of computing the CRT-RSA secret key and factoring in this paper. With
the help of the latest partial key exposure attack on CRT-RSA, we demonstrate that there exists
a polynomial-time algorithm outputting the factorization of N = pq for edp, edq < N3/2 when
given the CRT-RSA key information (N, e, dp, dq). We apply Coppersmith’s lattice-based method
as a basic mathematical tool for finding the small root solutions of modular polynomial equations.
Furthermore, we provide validation experiments to illustrate the correctness of the CRT-RSA modulus
factorization algorithm, and show that computing the CRT-RSA secret key and factoring its modulus
is polynomial-time equivalent by using concrete numerical examples.

Keywords: CRT-RSA; cryptanalysis; factorization; lattice-based method; polynomial-time equivalence

MSC: 94A60

1. Introduction

Rivest, Shamir, and Adleman proposed the first practical public-key cryptosystem
named the RSA algorithm [1]. This algorithm just involves the elementary number-theoretic
operations and is easy to compute and implement. Thus, RSA is widely studied in the field
of information security and serves as an influential public-key cryptographic algorithm
utilized by international standardization organizations. The RSA cryptosystem consists of
a key generation algorithm, an encryption algorithm, and a decryption algorithm, which
are described as follows.

Key Generation. Randomly select two prime numbers p, q of the same bit-size and compute
the modulus N = pq along with its Euler’s totient function ϕ(N) = (p− 1)(q− 1).
Randomly select 0 < e < ϕ(N) satisfying gcd(e, ϕ(N)) = 1 as the public key and
compute d ≡ e−1 mod ϕ(N) as the private key.

Encryption. Alice transforms a plaintext message into m ∈ ZN and computes c ≡ me mod
N as the corresponding ciphertext.

Decryption. Bob receives a ciphertext c and calculates cd mod N. Bob extracts the trans-
formed m and recovers the original plaintext message.
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The correctness of the encryption and decryption algorithms is ensured by Euler’s
Totient Theorem. Since both the public key e and the private key d are calculated in the
exponent position, they are mentioned as the public and private exponents, respectively.

The hardness assumption of the RSA algorithm is the intractability of the integer
factorization problem [2]. There is still no known polynomial-time algorithm that can factor
sufficiently large integers using current classical computers. So there is no known effective
attack against the RSA algorithm. However, on the other hand, RSA with small private
exponents have been proven to be insecure when using Wiener’s continued fraction-based
attack [3] and Coppersmith’s lattice-based attack [4]. A series of cryptanalytic researches on
RSA and its variants were subsequently developed based on the lattice-based method, see
the literature [5–12]. One of these works related to the hardness assumption of RSA is the
polynomial-time equivalence proof of computing the RSA secret key and factoring [8,13].
The main contribution is applying the lattice-based method to prove that there exists an
algorithm that can output the factorization of the modulus N = pq in polynomial time
when given (N, e, d).

In fact, in the public key cryptography standard PKCS #1 [14], the CRT-RSA algorithm
is a fast technical implementation of RSA. Here CRT-RSA refers to the RSA variant using
the Chinese Remainder Theorem, which was proposed in [15]. The Chinese Remainder
Theorem formulates the solution to simultaneous linear congruences and is specified
as follows.

Theorem 1. Let m1, m2, . . . , mk be mutually coprime positive integers, and let a1, . . . , ak be inte-
gers. Then the following system of linear congruences

x ≡ ai mod mi

has a unique solution in the sense of modulo M = ∏k
i=1 mi. Let Mi = M/mi for i = 1, . . . , k, then

the unique solution is

x =
k

∑
i=1

ai Mi(M−1
i mod mi) mod M.

Since the RSA modulus N = pq is the product of two prime numbers, we consider
the case of k = 2, i.e., the system of linear congruences is x ≡ a1 mod p and x ≡ a2 mod q.
In this case, the solution expression is more concise.

x = (a1 + ((a2 − a1)× (p−1 mod q) mod q)× p) mod pq. (1)

For a ciphertext c = me mod N, the decryption algorithm works in the following
strategy. One first does a partial decryption operation to recover mp = cd mod p, mq =

cd mod q, and then use the Chinese Remainder Theorem to combine the above two parts to
recover m. Since p and q are coprime, one applies the Formula (1) that yields

m = (mp + ((mq −mp)× (p−1 mod q) mod q)× p) mod pq.

It can be further simplified as

m = (mp + p((mq −mp)p−1 mod q)) mod N. (2)

Let dp ≡ e−1 mod (p− 1) and dq ≡ e−1 mod (q− 1), by Fermat’s Little Theorem we
have

mp = cdp ≡ cd mod p, mq = cdq ≡ cd mod q.

Thus, dp, dq are called CRT exponents and used as private exponents instead of d. The above
Formula (2) is known as Garner’s algorithm [16]. Theoretically speaking, the decryption
efficiency of the modular operations can be accelerated by a factor of four due to the
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reduction of the modulus from N to p or q. We summarize the CRT-RSA cryptosystem
as follows.

Key Generation. Randomly select two prime numbers p, q of the same bit-size and com-
pute the modulus N = pq and its Euler’s totient function ϕ(N) = (p− 1)(q− 1).
Randomly select 0 < e < ϕ(N) satisfying gcd(e, ϕ(N)) = 1 as the public key and
compute dp ≡ e−1 mod (p− 1), dq ≡ e−1 mod (q− 1) as the private key.

Encryption. Alice transforms a plaintext message into m ∈ ZN and computes c ≡ me mod
N as the corresponding ciphertext.

Decryption. Bob receives a ciphertext c and calculates mp = cdp mod p, mq = cdq mod q.
Bob extracts m = (mp + p((mq −mp)p−1 mod q)) mod N and recovers the original
plaintext message.

Cryptanalysis of the CRT-RSA algorithm also attracts many researchers. The small
CRT-exponent attack was originally presented as an open problem in Wiener’s attack [3].
The first cryptanalytic result was given in [6], which was effective for unbalanced primes
p and q. Subsequently, Jochemsz and May [17] proposed the small CRT-exponent attack
for balanced primes when the attack range is dp, dq < N0.073. It was further improved
to dp, dq < N0.091 in [12] and shortly afterwards to dp, dq < N0.122 [18]. In addition, the
partial-key-exposure attacks such as [19–23] were studied due to the consideration of partial
leakage of the CRT-RSA private key. From the implementation aspect, side-channel attacks
such as [24–28] were proposed by exploiting the side-channel information leakage during
the running process of the CRT-RSA algorithm.

Unlike the above attacks, we focus on the intrinsic security of CRT-RSA, i.e., its math-
ematical hardness assumption. From the theoretical research aspect, it is interesting to
investigate the polynomial-time equivalence of computing the CRT-RSA secret key and
factoring its modulus. Therefore, the research problem is stated as follows.

If the CRT-RSA key information (N, e, dp, dq) is given as input, does
there exist a polynomial-time algorithm that can output the factorization of N?
Furthermore, is it possible that the CRT-exponents reach the natural constraint
dp, dq < N1/2 for e ≈ N?

It is well known that dp and dq can be efficiently inferred from the factorization of
N = pq and the public exponent e. Hence, it suffices to show that the above problem is
solvable to conclude that computing the CRT-RSA secret key and factoring the modulus
are polynomial-time equivalent. Our main goal is to demonstrate and design a polynomial-
time algorithm outputting the factorization of N for given CRT-RSA key information
(N, e, dp, dq). The specific goal is to further enlarge the attack range of CRT exponents
dp, dq. We study how to use improved analysis techniques to carry out attacks on CRT-RSA
from the perspective of its intrinsic security, namely the polynomial-time equivalence of
computing the CRT-RSA secret key and factoring its modulus.

Inspired by the latest partial key exposure attack on CRT-RSA [23], we show an opti-
mized polynomial-time equivalence of computing the CRT-RSA secret key and factoring.
To be specific, we give a positive answer to the above research problem based on the partial
key exposure attack on CRT-RSA. A polynomial-time factoring algorithm is presented
for the given CRT-RSA key information (N, e, dp, dq), which outputs the factorization
result of N = pq. Technically speaking, the factoring algorithm involves an error term
gcd(N − 1, 2te) for t := dlog2(max(dp, dq))e. This term may equal to O(1), which is neg-
ligible compared to e, dp, dq in the most favorable case, and asymptotically leads to the
natural constraint dp, dq < N1/2 for e ≈ N. Moreover, we provide validation experiments
in the form of numerical examples.

Our contribution mainly includes a new factoring algorithm and an improved attack
result, which are summarized as follows.

• We study the security of CRT-RSA concerning its mathematical hardness assumption and
propose an improved polynomial-time algorithm of factoring the CRT-RSA modulus.
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• We verify the correctness and validity of the proposed CRT-RSA modulus factorization
algorithm with numerical computer experiments and always successfully obtain the
factorization results.

• We further discuss the advantages and disadvantages of our approach with several
comparisons to properly assess the proposed factoring attack.

The rest of this paper is organized as follows. Section 2 introduces the lattice-based
method, which is used as a basic mathematical tool to solve the research problem. Section 3
first reviews the latest partial key exposure attack on CRT-RSA and gives a refined theorem
with more flexible parameters. Then we propose an improved polynomial-time equivalence
of computing the CRT-RSA secret key and factoring. Both the CRT-RSA key computation
algorithm and the CRT-RSA modulus factorization algorithm are presented. Finally, the
validation experiments are provided in the form of numerical examples. We compare our
results with previous studies and discuss the advantages and disadvantages of the proposed
algorithms in Section 4. Section 5 concludes this paper.

2. Materials and Methods

We introduce the lattice-based method, which consists of the lattice reduction al-
gorithm [29] and Coppersmith’s techniques [4]. Generally speaking, a lattice is a discrete
additive subgroup in Rn that is defined as follows.

Definition 1. Let 1 ≤ ω ≤ n and ~b1, . . . ,~bω ∈ Rn be a set of linearly independent vectors.
The lattice L generated by~b1, . . . ,~bω is the set containing all linear combinations of the vectors
with integer coefficients.

L := Z~b1 + · · ·+Z~bω =

{
ω

∑
i=1

zi~bi : zi ∈ Z
}

.

The vector set~b1, . . . ,~bω is called a basis of the lattice L. Further, n is the lattice dimension, ω is
the lattice rank, and L is full-rank if ω = n. For i = 1, . . . , ω, each basis vector can be written as
~bi = (bi1, . . . , bin) in the form of row vectors, thus forming a basis matrix B =

(
bij
)

ω×n.

Definition 2. The fundamental parallelepiped of L is defined as P(L) := {B~x : ~x ∈ [0, 1)n},
where B is any basis matrix of the lattice L. The lattice determinant is defined as the volume of the
fundamental parallelepiped.

det(L) :=
√

det(BBT),

where BT is the transpose matrix of B. Thus, it follows that the determinant of a full-rank lattice
L is

det(L) =
√

det(BBT) =
√

det(B)det(BT) = |det(B)|,

where det(B) is the determinant of the basis matrix B.

The lattice determinant does not depend on a particular basis matrix since it is an
invariant of the lattice itself. A lattice can usually be generated by many different basis
matrices. More concretely, any two basis matrices of the same lattice can be converted to
each other using a unimodular matrix. Unless otherwise specified, the lattices in this paper
are full-rank.

The famous Lenstra–Lenstra–Lovász (LLL) lattice reduction algorithm was proposed
in [29]. Though this algorithm cannot directly output the shortest lattice vector, it outputs
the approximately shortest basis vectors in polynomial time. In other words, the length
of the output vectors does not exceed a certain multiple of the shortest vector, and the
LLL algorithm usually works better in practice. The works [29,30] show the following
lemma for the upper bound estimation of the approximately shortest vectors output by the
LLL algorithm.
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Lemma 1 (LLL). Let ~v1, . . . ,~vω be a set of basis vectors output by the LLL algorithm running on
the lattice L. We have

|~v1|, . . . , |~vi| ≤ 2
ω(ω−1)

4(ω+1−i) (det(L))
1

ω+1−i , i = 1, . . . , ω.

Its time complexity is O
(
ω6(log B)3) that is polynomial in the lattice dimension ω and the length

of the input vectors B.

Coppersmith presented how to solve modular or integer polynomial equations based
on the LLL algorithm [31,32]. The core idea is to construct solvable equations over the
integers, which are represented as short basis vectors in the lattice. Meanwhile, the short
basis vectors can be efficiently found by the LLL algorithm.

We describe the specific problem of solving modular polynomial equations as fol-
lows. Let R be a known positive integer, and let v(x1, . . . , xk) be a multivariate poly-
nomial. The goal is to find small root solutions of v(x1, . . . , xk) mod R, i.e., to solve
v(x′1, . . . , x′k) ≡ 0 mod R under |x′i | ≤ Xi, where Xi is the upper bound on the absolute
value of the variable x′i related to the small root solution. It is required is to maximize the
upper bound Xi on the unknown variables, while keeping the time complexity polynomial
in the input parameters.

Before describing the strategy of solving modular polynomial equations, we define the
polynomial norm. For a certain k-variable polynomial v(x1, . . . , xk) = ∑ ai1,...,ik xi1

1 · · · x
ik
k ,

the non-zero coefficients ai1,...,ik are related to the corresponding monomials xi1
1 · · · x

ik
k . The

polynomial norm is defined as follows.

Definition 3. Let v(x1, . . . , xk) = ∑ ai1,...,ik xi1
1 · · · x

ik
k with ai1,...,ik 6= 0 be a k-variable polynomial.

Its norm is defined as

‖v(x1, . . . , xk)‖ :=
(
∑ a2

i1,...,ik

)1/2
.

Howgrave-Graham [33] further improved on Coppersmith’s original techniques. The
following lemma is used for determining whether the small root solution of a modular
polynomial equation also holds on the integers, i.e., whether the modular condition can
be eliminated.

Lemma 2 (Howgrave-Graham). Let v(x1, . . . , xk) ∈ Z[x1, . . . , xk] be a k-variable integer poly-
nomial containing ω monomials. When the following conditions are satisfied, v(x′1, . . . , x′k) = 0
also holds over the integers.

1. v(x′1, . . . , x′k) ≡ 0 mod R, |x′1| ≤ X1, . . . , |x′k| ≤ Xk,
2. ‖v(X1x1, . . . , Xkxk)‖ < R/

√
ω.

The basic idea of solving k-variable polynomials is to construct ` ≥ k algebraically
with independent polynomials sharing the same small root over the integers. Hence, one
can extract the final solution by the Gröbner basis computation [34]. By applying Lemma 2,
the problem of solving modular polynomial equations can be turned to solving integer
equations. Further, by combining Lemma 1, one can solve a given modular polynomial
equation under certain conditions. The lattice-based method constructs a set of shift poly-
nomials sharing the same root modulo R and then transforms the derived polynomials into
integer equations in a specific way. Technically speaking, a lattice-basis matrix is generated
from the coefficient vectors of the shift polynomials, which spans an ω-dimensional lattice.
The LLL algorithm is applied to obtain the approximately shortest basis vectors, which
are later transformed into polynomial equations. If the corresponding polynomial norm
is small enough, then the derived equation also holds over the integers. We summarize
the process of solving k-variable polynomial equations using the lattice-based method
as follows.
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1. The first step is to construct the set of shift polynomials P for given modular poly-
nomials f1(x1, . . . , xk), . . . , fn(x1, . . . , xk) containing k unknown variables and a given
modulus M. For 0 ≤ i1, . . . , in ≤ m ∈ N and j1, . . . , jk ∈ N, the basic form of a shift
polynomial is defined as

pi(x1, . . . , xk) := f i1
1 · · · f in

n · x
j1
1 · · · x

jk
k ·M

m−(i1+···+in), 1 ≤ i ≤ ω.

Thus, all polynomials in P have the same root (x′1, . . . , x′k) mod Mm, where the modu-
lus is R = Mm.

2. The second step is to use~bi denoting the row vector transformed from the coefficient
vectors of the shift polynomial pi(X1x1, . . . , Xkxk) when substituting Xixi for xi. The
lattice L =

{
∑ω

i=1 zi~bi : zi ∈ Z
}

is constructed by the lattice basis matrix B = (bij)ω×ω .
Then apply the LLL algorithm to the lattice L and extract the first ` many approxi-
mately shortest vectors~v1, . . . ,~v` from the output. The output vectors are transformed
into a system V of integer equations v1(x1, . . . , xk), . . . , v`(x1, . . . , xk), whose roots also
hold over the integers.

3. The third step is extract the desired small root solution. If the derived polynomials
vi(x1, . . . , xk) are mutually algebraically independent, the system of integer equations
V can be solved by applying the Gröbner basis computation. At this point, the small
root solution (x′1, . . . , x′k) of the original modular polynomials is obtained.

When obtaining the first ` number of basis vectors using the LLL algorithm, to ensure
that the polynomial equations related to the basis vectors satisfy the solvable conditions,

we have 2
ω(ω−1)

4(ω+1−`) det(L)
1

ω+1−` < R/
√

ω. Since we always have `� ω � R, the following
simplified condition is obtained by omitting the lower error terms,

det(L) < Rω. (3)

To make the lattice determinant det(L) easy to compute, it is generally required that
the basis matrix B is of lower or upper triangular form. Therefore, during the construction
of shift polynomials, it is necessary to ensure that each new shift polynomial pi introduces
exactly one new monomial λi. Hence, the lattice determinant is calculated by accumulating
the monomials on the diagonal of the lattice basis matrix. We have det(L) = |det(B)| =
∏ω

i=1 |λi(X1, . . . , Xk)|.
The solution of multivariate polynomials using the lattice-based method is heuristic,

so we note that its feasibility relies on the following heuristic assumption. Although the
LLL algorithm guarantees that the reduced basis vectors are linearly independent, it cannot
guarantee the algebraic independence of the transformed polynomials. On the other hand,
similar to other cryptanalytic researches on RSA and its variants using the lattice-based
method, the following assumption always holds in the validation experiments.

Assumption 1. The system of integer equations related to the approximately shortest basis vectors
output by the LLL algorithm can be efficiently solved. The small root solution can be extracted in
polynomial time by the Gröbner basis computation.

3. Results

We aim to propose a polynomial-time algorithm outputting the factorization of N for
given CRT-RSA key information (N, e, dp, dq) by using the latest partial key exposure
attack. To do so, we modify solving the factoring problem into conducting the partial key
exposure attack. In other words, we extract two primes p and q for known LSB components
of the CRT-exponents (i.e., the LSB components are exactly dp, dq themselves if let the MSB
components be 0). We follow the lattice-based method and briefly review the partial key
exposure attack on CRT-RSA.

The partial key exposure attack on CRT-RSA [23] implicitly shows the existence of
a factoring algorithm, which takes given CRT-RSA key information (N, e, dp, dq) as
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input and outputs the factorization of N = pq for dp, dq < N1/2 and e ≈ N. Therefore,
we explicitly design a polynomial-time algorithm that outputs the factorization of N for
dp, dq < N1/2 and e ≈ N. From a mathematical standpoint, we simplify the complicated
and redundant attack analysis in [23] and further present a refined theorem in order to
fit the factoring problem on CRT-RSA. To be specific, we concentrate on the error term
that appears in the mathematical derivation process. We carefully analyze and reduce the
influence of this error term and hence obtain attack results that are better than previous
studies [23,35].

3.1. Partial Key Exposure Attack on CRT-RSA

Recently, May, Nowakowski, and Sarkar [23] proposed an improved partial key
exposure attack on CRT-RSA, which is based on the small CRT exponent attack working
for dp, dq < N0.122 of [18]. This attack applies to the range N0.122 < dp, dq < N0.5, which
smoothly covers the full interval of the CRT exponents. Let N = pq be the CRT-RSA
modulus, where p and q are prime numbers of the same bit-size. Assume that the public
exponent is e ≈ Nα, the CRT-exponents are dp, dq ≈ Nβ. The CRT-exponents can be written
as dp = d∗p2t + d̃p, dq = d∗q2t + d̃q, where t ∈ N and the LSB components d̃p, d̃q ≈ Nβ−δ

are known, whereas the MSB components d∗p, d∗q ≈ Nδ are unknown. Then, there exists a
polynomial-time algorithm that outputs the secret information p, q using the given partial
key exposure.

According to dp ≡ e−1 mod (p− 1) and dq ≡ e−1 mod (q− 1), we have

edp = k(p− 1) + 1 (4)

edq = `(q− 1) + 1 (5)

for two positive integers k, ` ∈ N. Since the sizes of e, dp, dq, p, and q are known, the upper
bounds on k and ` are estimated as

k, ` < max
(

edp

p− 1
,

edq

q− 1

)
= Θ

(
NαNβ

N1/2

)
= Θ

(
Nα+β−1/2

)
. (6)

Applying the Formula (4), we have f
(
xp, yp

)
:= xp

(
yp − 1

)
+ 1 = xpyp − xp + 1,

whose root is (k, p) mod e. In addition, multiplying the Formula (5) by p and rearranging
it gives

pedq = p`(q− 1) + p = N`− p`+ p = N(`− 1) + N − p(`− 1).

Similarly, we have g
(
yp, zp

)
:= ypzp − Nzp − N, whose root is (p, ` − 1) mod e.

Moreover, the Equations (4) and (5) can be rewritten as kp = k − 1 + edp and `q = `−
1 + edq. Multiplying them together gives k`N = (k− 1)(`− 1) + (k− 1)edq + edp(`− 1) +
e2dpdq, and we obtain

(N − 1)k(`− 1) + Nk + (`− 1) = e
(
dq(k− 1) + dp(`− 1) + edpdq

)
.

Therefore, we have h
(
xp, zp

)
:= (N − 1)xpzp + Nxp + zp, whose root is (k, ` −

1) mod e. Combining the above modular polynomials, we obtain the following system of
polynomial equations,

f
(
xp, yp, zp

)
= xpyp − xp + 1 = 0,

g
(
xp, yp, zp

)
= ypzp − Nzp − N = 0,

h
(
xp, yp, zp

)
= (N − 1)xpzp + Nxp + zp = 0.

Their common root is (k, p, `− 1) mod e.
Considering the special algebraic relationship between the unknown variables, we

use six variables, namely xp, xq, yp, yq, zp, zq instead of three variables. In this case, the
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relevant elements in certain monomials of the original polynomials need to be converted
algebraically as follows.

ypyq ←→ N, xp − 1←→ xq, xq + 1←→ xp, zp + 1←→ zq, zq − 1←→ zp. (7)

Thus, we obtain linear polynomials after the conversion,
f
(
xp, xq, yp, yq, zp, zq

)
:= xpyp − xq,

g
(
xp, xq, yp, yq, zp, zq

)
:= ypzp − Nzq,

h
(
xp, xq, yp, yq, zp, zq

)
:= Nxpzq − xqzp.

Combining known values d̃p and d̃q, the polynomials involved in the partial key exposure
attack are as follows.

f̃
(

xp, xq, yp, yq, zp, zq
)

:= xpyp − xq − ed̃p

g̃
(

xp, xq, yp, yq, zp, zq
)

:= ypzp − Nzq + ed̃qyp

h̃
(

xp, xq, yp, yq, zp, zq
)

:= Nxpzq − xqzp − e2d̃pd̃q − ed̃pzp − ed̃qzq.

(8)

The root is (x′p, x′q, y′p, y′q, z′p, z′q) = (k, k − 1, p, q, ` − 1, `) mod 2te, and the
corresponding upper bounds are x′p, x′q, z′p, z′q ≤ X = Nα+β−1/2, and y′p, y′q ≤ Y = N1/2.

We apply the lattice-based method to extract (x′p, x′q, y′p, y′q, z′p, z′q). The first step is
to construct the shift polynomials. Before that, we need to define the monomial set, whose
elements are contained in the shift polynomials. The monomial set is closely related to the
columns of the lattice basis matrix in the second step, and directly affects the alignment of
the matrix rows.

Definition 4. Let m ∈ Z+. The monomial set M̃ is defined as

M̃ =
{

xa
pyb

pzc
p | 0 ≤ a ≤ m, 0 ≤ c ≤ m, 0 ≤ b ≤ 2m

}
.

To facilitate the exposition of the lattice construction, it is additional to defineM⊆ M̃ as

M =
{

xa
pyb

pzc
p | 0 ≤ a ≤ m, 0 ≤ c ≤ m, 0 ≤ b ≤ a + c

}
.

Furthermore, M̃ = M1 ∪M2 ∪M3 ∪M4 ∪M5 is partitioned using five disjoint subsets
as follows.

M1 :=
{

xa
pyb

pzc
p ∈ M | a ≤ c, b ≤ c− a

}
,

M2 :=
{

xa
pyb

pzc
p ∈ M | a > c, b < a− c

}
,

M3 :=
{

xa
pyb

pzc
p ∈ M | xa

pyb
pzc

p /∈ (M1 ∪M2), a + b + c ≡ 0 mod 2
}

,

M4 :=
{

xa
pyb

pzc
p ∈ M | xa

pyb
pzc

p /∈ (M1 ∪M2 ∪M3)
}

,

M5 :=
{

xa
pyb

pzc
p ∈ M̃ | xa

pyb
pzc

p /∈ M
}

.

The shift functions and the corresponding shift polynomials are defined based on the
monomial sets M̃ andM.
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Definition 5. The shift functions are defined as follows.

E f (a, b, c) :=



0, xa
pyb

pzc
p ∈ M1

b, xa
pyb

pzc
p ∈ M2

(a + b− c)/2, xa
pyb

pzc
p ∈ M3

(a + b− c + 1)/2, xa
pyb

pzc
p ∈ M4

a, xa
pyb

pzc
p ∈ M5

Eg(a, b, c) :=



b, xa
pyb

pzc
p ∈ M1

0, xa
pyb

pzc
p ∈ M2

(−a + b + c)/2, xa
pyb

pzc
p ∈ M3

(−a + b + c− 1)/2, xa
pyb

pzc
p ∈ M4

c, xa
pyb

pzc
p ∈ M5

Eh(a, b, c) :=



a, xa
pyb

pzc
p ∈ M1

c, xa
pyb

pzc
p ∈ M2

(a− b + c)/2, xa
pyb

pzc
p ∈ M3

(a− b + c− 1)/2, xa
pyb

pzc
p ∈ M4

0, xa
pyb

pzc
p ∈ M5

Ex(a, b, c) :=

{
a− b− c, xa

pyb
pzc

p ∈ M2

0, xa
pyb

pzc
p ∈ M1 ∪M3 ∪M4 ∪M5

Ez(a, b, c) :=


−a− b + c, xa

pyb
pzc

p ∈ M1

0, xa
pyb

pzc
p ∈ M2 ∪M3 ∪M5.

1, xa
pyb

pzc
p ∈ M4

For a given monomial xa
pyb

pzc
p ∈ M̃, the corresponding shift polynomial is determined as

p̃[a,b,c]
(

xp, xq, yp, yq, zp, zq
)

:= f̃ E f g̃Eg h̃Eh xEx
p zEz

p (2te)2m−(E f +Eg+Eh). (9)

It is known that all the shift polynomials p̃[a,b,c]
(

xp, xq, yp, yq, zp, zq
)

have the common
root (k, k− 1, p, q, `− 1, `) mod (2te)2m. The shift polynomials are further adapted by
using the algebraic relation Formula (7). We construct the updated shift polynomials under
the following induced transformation rules.

Definition 6. Let u be a polynomial defined over xp, xq, yp, yq, zp, zq. tr(u) is defined as the
updated polynomial after the following transformation rules.

1. For all monomials, ypyq are converted to N,
2. For monomials without yp, xp are converted to xq + 1 and zp are converted to zq − 1,
3. For monomials with yp, xq are converted to xp − 1 and zq are converted to zp + 1.

Thus, tr(u) contains only monomials of the form xa
pyb

pzc
p and xa

qyb
qzc

q, i.e., variables with subscripts
p and q do not appear in a monomial at the same time.

The second step is to construct the lattice-basis matrix B. To do this, we need to define
the monomial order and the polynomial order, which are used to arrange the order of
columns and rows in the lattice-basis matrix. When we generate the lattice-basis matrix, a
polynomial p̃[a,b,c]

(
xp, xq, yp, yq, zp, zq

)
is first multiplied by some extra variables and then

transformed by Definition 6. Finally, the upper bounds on the unknown variables are
substituted and the polynomials are arranged in a one-to-one correspondence with the
monomial order.
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Definition 7. The monomial order is defined as follows.

xa1
p yb1

p zc1
p ≺ xa2

p yb2
p zc2

p ⇐⇒


c1 < c2
c1 = c2, a1 < a2
c1 = c2, a1 = a2, b1 < b2

The lattice basis matrix B and the polynomial order (namely the matrix row) are defined in
the following way. The i-th column is related to the monomial λ[a,b,c], which is xa

qyb/2
q zc

q for even

b and xa
pydb/2e

p zc
p for odd b. The parameters a, b, c are taken from the i-th smallest monomial

xa
pyb

pzc
p in M̃. For xa

pyb
pzc

p ∈ M, the i-th row is associated with the coefficient vector of polynomial

tr
(

p̃[a,b,c] · y
bb/2c
q

)(
Xxp, Xxq, Yyp, Yyq, Xzp, Xzq

)
. For xa

pyb
pzc

p ∈ M5 with even b, the i-th row

takes tr
(

p̃[a,b,c] · y
b(a+c)/2c
q · yd(b−a−c)/2e

q

)(
Xxp, Xxq, Yyp, Yyq, Xzp, Xzq

)
. For xa

pyb
pzc

p ∈ M5

with odd b, it takes tr
(

p̃[a,b,c] · y
b(a+c)/2c
q · yd(b−a−c)/2e

p

)(
Xxp, Xxq, Yyp, Yyq, Xzp, Xzq

)
. Then

the lattice basis matrix B is lower triangular.

We then apply the lattice reduction algorithm to L generated by the basis matrix
B. The first few approximately shortest basis vectors ~vi of the output are converted to
polynomial form vi, which make up the system of integer equations V . The third step is to
solve the above system of integer equations. We apply the Gröbner basis computation to
extract (k, k− 1, p, q, `− 1, `). At this point, we finally obtain the secret information p
and q. Under the above lattice-based solution process, we present the following theorem.

Theorem 2. Let N = pq be a sufficiently large CRT-RSA modulus, where p and q are prime
numbers of the same bit-size. Assume that the public exponent is e ≈ Nα, the CRT exponents are
dp, dq ≈ Nβ. The CRT exponents are written as dp = d∗p2t + d̃p and dq = d∗q2t + d̃q, where t ∈ N
and the LSB components d̃p, d̃q ≈ Nβ−δ are known, whereas the MSB components d∗p, d∗q ≈ Nδ

are unknown. Then given (N, e, d̃p, d̃q) and ensuring gcd(N − 1, 2te) = O(1), if the condition

δ <
3− 2α− 2β

10
(10)

holds then p and q can be computed in polynomial time in log N.

Proof. We construct the lattice-basis matrix B and generate the ω-dimensional full-rank
lattice L. Hence, each diagonal element bi,i of B contains the powers of 2te, X, Y, and N,
(N − 1), which are expressed as

bi,i = (2te)E1,i XE2,i YE3,i NE4,i (N − 1)E5,i .

To simplify the computation of the lattice determinant, we should multiply the poly-
nomials of the rows by the following appropriate multiplicative inverse(

NE4,i

(
N − 1

gcd(2te, N − 1)

)E5,i
)−1

mod (2te)2m (11)

to eliminate the effect of powers of N and (N − 1). The updated diagonal elements are
b∗i,i = (2te)E1,i XE2,i YE3,i gcd(2te, N − 1)E∗4,i . Meanwhile, the root solution remains (k, k −
1, p, q, ` − 1, `) mod (2te)2m. Since it is assumed that gcd(2te, N − 1) = O(1) in the
most favorable case, its influence can be ignored. The lattice determinant is calculated
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asymptotically as det(L) = |det(B)| = (2te)se XsX YsY , where the corresponding exponents
are calculated as follows.

se =
ω

∑
i=1

E1,i = ∑
xa

pyb
pzc

p∈M̃

(
2m− E f (a, b, c)− Eg(a, b, c)− Eh(a, b, c)

)
=

7
3

m4 + o
(

m4
)

,

sX =
ω

∑
i=1

E2,i = ∑
xa

pyb
pzc

p∈M̃
(a + c) = 2m4 + o

(
m4
)

,

sY =
ω

∑
i=1

E3,i = ∑
xa

pyb
pzc

p∈M̃

b
2
= m4 + o

(
m4
)

.

On the other hand, the dimension of the lattice L is

ω = ∑
xa

pyb
pzc

p∈M̃
1 = (m + 1)2(2m + 1) = 2m3 + o

(
m3
)

.

We apply the condition (3), i.e., det(L) < (2te)2mω . By substituting 2t = Nβ−δ, e = Nα,
X = Nα+β−1/2 and Y = N1/2, we have

(α + β− δ) · 7
3

m4 +

(
α + β− 1

2

)
· 2m4 +

1
2
·m4 < (α + β− δ) · 4m4 + o

(
m4
)

.

After simplification, we obtain δ < (3− 2α− 2β)/10. The running time mainly
depends on the LLL algorithm, while the running time of the Gröbner basis computation is
negligible in comparison. Thus, its time complexity is O

(
ω6(log B)3) = O

(
m21(log N)3).

Because m is a fixed number for generating the lattice, the time complexity is polynomial in
log N.

We elaborate on the details of the lattice-basis matrix in the partial key exposure
attack on CRT-RSA and present the specific attack algorithm. Furthermore, to understand
Theorem 2 and the order of columns and rows in the lattice construction more intuitively,
we give a toy example of the lattice basis matrix for m = 1.

Example 1. According to Definition 7, the lattice basis matrix B for m = 1 is shown in Table 1,
where ẽ := 2te and f̃ , g̃, h̃ are the derived polynomials to be solved.

Table 1. A toy example of the lattice basis matrix for m = 1.

1 yp yq xq xpyp xqyq zq ypzp yqzq xqzq xpypzp xqyqzq

ẽ2 ẽ2

yp ẽ2 – ẽ2Y
yq ẽ2 – – ẽ2Y
xq ẽ2 – – – ẽ2X

f̃ ẽ – – – – ẽXY
f̃ yq ẽ – – – – – ẽXY
zp ẽ2 – – – – – – ẽ2X
g̃ẽ – – – – – – – ẽXY

g̃yq ẽ – – – – – – – – ẽXY
h̃ẽ – – – – – – – – – ẽXY

f̃ zp ẽ – – – – – – – – – – ẽX2Y
f̃ g̃zp – – – – – – – – – – – X2Y

It is clear that the lattice basis matrix B is indeed a lower triangular matrix, and that each new
shift polynomial p̃i introduces only one new monomial λi.
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We present the partial key exposure attack on CRT-RSA in Algorithm 1, which is
denoted by A(N, e, 2t, d̃p, d̃q).

Algorithm 1 The partial key exposure attack algorithm A(N, e, 2t, d̃p, d̃q).

Input: CRT-RSA modulus N, public exponent e, 2t and known LSBs d̃p, d̃q

1: f̃
(

xp, xq, yp, yq, zp, zq
)
← xpyp − xq − ed̃p

2: g̃
(

xp, xq, yp, yq, zp, zq
)
← ypzp − Nzq + ed̃qyp

3: h̃
(

xp, xq, yp, yq, zp, zq
)
← Nxpzq − xqzp − e2d̃pd̃q − ed̃pzp − ed̃qzq

4: M̃ ⇐ m ∈ Z+ {construct the monomial set}
5: E f , Eg, Eh, Ex, Ez ⇐ M̃ {generate shift exponents}

6: p̃[a,b,c]
(

xp, xq, yp, yq, zp, zq
)
← f̃ E f g̃Eg h̃Eh xEx

p zEz
p (2te)2m−(E f +Eg+Eh)

7: B⇐ p̃[a,b,c]
(

xp, xq, yp, yq, zp, zq
)

{generate the lattice basis matrix}
8: ~vi ⇐ B {compute reduced basis vectors}
9: V ⇐ ~vi {construct the equation system}

10: (k, k− 1, p, q, `− 1, `)⇐ V {extract the desired root}
11: return p and q
Output: The factorization of N = pq

3.2. Polynomial Time Equivalence of Computing the CRT-RSA Secret Key and Factoring

We show an explicit demonstration on the polynomial-time equivalence of computing
the CRT-RSA secret key and factoring by invoking the partial key exposure attack algorithm
A(N, e, 2t, d̃p, d̃q). It is specified in the following theorem.

Theorem 3. Let N = pq be a sufficiently large CRT-RSA modulus, where p and q are prime
numbers of the same bit size. Let e be the public exponent and dp, dq be the corresponding CRT-
exponents. Then the following statements hold under the condition edp, edq < N3/2 and ensuring
gcd(N − 1, 2te) = O(1).

• Given (N, e, p, q), dp and dq can be computed in polynomial time,
• Given (N, e, dp, dq), p and q can be computed in polynomial time.

When e ≈ N is close to the CRT-RSA modulus, the CRT-exponents satisfies the natural constraint
dp, dq < N1/2 (or dpdq < N).

Note that the error term gcd(N − 1, 2te) is derived from the proof of Theorem 2.
To simplify the lattice determinant computation, we multiply each row polynomial by
an appropriate multiplicative inverse, i.e., (11) to eliminate the effect of powers of N and
(N − 1). However, gcd(N − 1, 2te) is at least equal to 2 and hence its influence cannot be
completely eliminated. We further check whether the assumption gcd(N − 1, 2te) = O(1)
holds in Section 4. From an algorithmic perspective, this error term gcd(N − 1, 2te)
affects the computation efficiency. To achieve the same attacking effect, a larger error term
requires lattices with higher dimension and hence the corresponding factoring attack takes
more time.

Proof. We divide the proof into two parts. One part proves that knowing (N, e, p, q) is
sufficient to compute dp and dq in polynomial time. The other part proves that known
(N, e, dp, dq) is sufficient to compute p and q in polynomial time. According to the
key generation algorithm, we have dp ≡ e−1 mod (p− 1), dq ≡ e−1 mod (q− 1). When
(N, e, p, q) is known, the values of e−1 mod (p− 1) and e−1 mod (q− 1) can be computed
by applying the extended Euclidean algorithm. It is shown in Algorithm 2 and denoted by
E(e, p− 1, q− 1).
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Algorithm 2 The CRT-RSA key computation algorithm E(e, p− 1, q− 1)

Input: CRT-RSA public exponent e, modulus factorization p and q
1: (u1, u2, u3)← (0, 1, p− 1)
2: (v1, v2, v3)← (1, 0, e)
3: while v3 > 0 do
4: r ← bu3/v3c
5: (u1, u2, u3)← (u1, u2, u3)− r · (v1, v2, v3)
6: (u1, u2, u3)←→ (v1, v2, v3)
7: end while
8: (u1, u2, u3)← (0, 1, q− 1)
9: (w1, w2, w3)← (1, 0, e)

10: while v3 > 0 do
11: r ← bu3/w3c
12: (u1, u2, u3)← (u1, u2, u3)− r · (w1, w2, w3)
13: (u1, u2, u3)←→ (w1, w2, w3)
14: end while
15: return v1 and w1
Output: CRT-exponents dp = e−1 mod (p− 1) and dq = e−1 mod (q− 1)

It is known that the time complexity of the modular inverse computation is O(log N),
so the CRT-RSA secret key computation algorithm E(e, p− 1, q− 1) can be done in poly-
nomial time. To prove that knowing (N, e, dp, dq) is sufficient to compute p and q in
polynomial time, we slightly modify the original problem into the form of the partial key
exposure attack on CRT-RSA. Denoting t := dlog2(max(dp, dq))e and letting d∗p = d∗q = 0,

we have leaked LSBs d̃p := dp, d̃q := dq. By calling the partial key exposure attack algo-
rithm A(N, e, 2t, d̃p, d̃q), we can extract p and q in polynomial time. The specific algorithm
is shown in Algorithm 3 and denoted by F (N, e, dp, dq).

Algorithm 3 The CRT-RSA modulus factorization algorithm F (N, e, dp, dq)

Input: CRT-RSA modulus N, public exponent e, CRT-exponents dp and dq
1: t← dlog2(max(dp, dq))e
2: d∗p ← 0, d∗q ← 0

3: d̃p ← dp, d̃q ← dq

4: f̃
(

xp, xq, yp, yq, zp, zq
)
← xpyp − xq − ed̃p

5: g̃
(

xp, xq, yp, yq, zp, zq
)
← ypzp − Nzq + ed̃qyp

6: h̃
(

xp, xq, yp, yq, zp, zq
)
← Nxpzq − xqzp − e2d̃pd̃q − ed̃pzp − ed̃qzq

7: M̃ ⇐ m ∈ Z+ {construct the monomial set}
8: E f , Eg, Eh, Ex, Ez ⇐ M̃ {generate shift exponents}

9: p̃[a,b,c]
(

xp, xq, yp, yq, zp, zq
)
← f̃ E f g̃Eg h̃Eh xEx

p zEz
p (2te)2m−(E f +Eg+Eh)

10: B⇐ p̃[a,b,c]
(

xp, xq, yp, yq, zp, zq
)

{generate the lattice basis matrix}
11: ~vi ⇐ B {compute reduced basis vectors}
12: V ⇐ ~vi {construct the equation system}
13: (k, k− 1, p, q, `− 1, `)⇐ V {extract the desired root}
14: return p and q
Output: The factorization of N = pq

The time complexity of the CRT-RSA modulus factorization algorithm depends
mainly on the partial key exposure attack, which can be done in O((log N)3) according to
Theorem 2. Thus, F (N, e, dp, dq) runs in polynomial time in log N. However, Algorithm 3
partially answers the research problem. It remains to show that the CRT exponents satisfy
the natural constraint, i.e., dp, dq < N1/2 for e ≈ N. For this purpose, we further apply the
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judgment condition (10) in Theorem 2. Assume that e ≈ Nα, dp, dq ≈ Nβ, d∗p, d∗q ≈ Nδ, the
partial key exposure attack on CRT-RSA works if

δ <
3− 2α− 2β

10
.

In Algorithm 3, we have the implication δ = 0, which shows that

0 <
3− 2α− 2β

10
.

Hence, it follows that α + β < 3/2, i.e., edp, edq < N3/2. The CRT-RSA modulus factoriza-
tion algorithm F (N, e, dp, dq) is feasible for e ≈ N, and the CRT-exponents are in the range
of dp, dq < N1/2. So far, our research goal is achieved.

3.3. Validation Experiments

We implement the CRT-RSA key computation algorithm E(e, p − 1, q − 1) and the
CRT-RSA modulus factorization algorithm F (N, e, dp, dq) based on SageMath [36]. The ex-
perimental platform is a personal computer running Windows 10 with Intel(R) Core(TM)
i5-10500 CPU 3.10 GHz and 8 GB RAM. All numbers in the validation experiments are ran-
domly selected. We summarize the experimental results as follows. The CRT-RSA key com-
putation algorithm E(e, p− 1, q− 1) outputs the modular inverse values e−1 mod (p− 1)
and e−1 mod (q− 1) quite efficiently. The CRT-RSA modulus factorization algorithm
F (N, e, dp, dq) runs with enough integer equations for solving the unknown variables and
finally factors the modulus N. To be specific, after running the LLL algorithm, we can
obtain a sufficient number of approximately shortest basis vectors to meet the requirements
in the lattice-based method. The desired root can be efficiently extracted by transform-
ing the lattice vectors into a system of integer equations and then applying the Gröbner
basis computation.

As the CRT-RSA key computation algorithm is a direct call to the extended Euclidean
algorithm, we focus on the CRT-RSA modulus factorization algorithm. In the experiments,
we first choose an appropriate m to control the construction of the shift polynomials. We
then construct the lattice basis matrix B and the ω-dimensional full-rank lattice L. The LLL
algorithm is applied to L, and we transform the first few output vectors into a system of
integer equations. We finally solve the system of integer equations using the Gröbner basis
computation and extract the desired root.

The detailed experimental results are given in Table 2. The log2 N column provides the
bit size of the CRT-RSA modulus of the generated instance. The α log2 N column provides
the bit size of the public exponent e. The β log2 N column provides the bit size of the CRT
exponents in our attacks. The lattice settings for conducting the factoring algorithms are
indicated by the m and ω columns. The time consumption (recorded in seconds) of the
LLL algorithm and the Gröbner basis computation are given in the Time-column. Two
particular numerical CRT-RSA examples are given in Examples 2 and 3.

Table 2. Experimental results of our proposed factoring attack on CRT-RSA.

log2 N α log2 N β log2 N m ω Time

512 40 384 2 45 3
512 512 20 2 53 4
512 512 30 3 132 424

1024 100 512 2 45 11
1024 200 768 3 112 2482
1024 1024 103 4 245 84,221
2048 250 2000 2 45 39
2048 2048 80 2 53 51
2048 2048 200 3 130 7412
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Example 2. In order to check the correctness and validity of the CRT-RSA modulus factorization
algorithm, we choose the following specific parameters and generate the test example.

1. Randomly generate 512-bit prime numbers p, q and the modulus N = pq,
2. Randomly generate 103-bit CRT exponents dp and dq,
3. Generate the public exponent e based on above p, q and dp, dq,
4. Denote the CRT-RSA key information as (N, e, dp, dq).

The values of the numerical CRT-RSA example are as follows.

N = 114347036081803578673339388300699529343751209241907643180876

458206667330922848834036065664761789957008250918211860604774

566584479411936175341623770289022043707073762248864386282628

990346540436123901362681015966801988295462057535857497607361

768945381482239937653004859004894600582582900917446891506894

263052143,

e = 223240854903959329163056785473769020659799535319489715586782

390754702103216662596028424458821582218235232577019255075762

125125183259281313726576508416053530713656742151040100413422

917401393760099325929355604572256120456696898516220623395554

309873831847027002512654955273158052172095928389224394251597

30187731,

dp = 6793718331323137434420097081795,

dq = 5689304626278643905322268826251.

In the CRT-RSA modulus factorization algorithm F (N, e, dp, dq), we choose m = 4, which
means that we need to apply the LLL algorithm to the lattice L with ω = 245. After running
for almost 84221 s, the approximately shortest basis vectors that meet the solvable condition are
obtained. The system of integer equations to be solved is then derived by transforming vectors into
polynomials. We finally solve it by applying the Gröbner basis computation in less than one second
and recover

p = 108638302771434350392709121078675710123453598877100622797142

999156910491518974867800775506243747756303770936993791366549

71732967591897327085997551822606809,

q = 105254807158005691967534136739997233691243442214073820398841

619002989698022942925837218623347529765489194410746175686245

27351967084444332562641383615278727.

One may check that N = pq does hold, so the CRT-RSA modulus factorization algorithm
F (N, e, dp, dq) successfully outputs the factorization of N = pq.

To show that the CRT-RSA key computation algorithm E(e, p− 1, q− 1) also runs in polyno-
mial time, we use the above CRT-RSA example and apply extended Euclidean algorithm. It runs in
less than one second and outputs

dp = 6793718331323137434420097081795,

dq = 5689304626278643905322268826251.

Example 3. In order to further check the correctness and validity of the CRT-RSA modulus
factorization algorithm for smaller e and larger CRT exponents, we choose the following specific
parameters and generate the test example.

1. Randomly generate 512-bit prime numbers p, q, and the modulus N = pq,
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2. Randomly generate 200-bit public exponent e,
3. Generate 768-bit CRT-exponents dp and dq based on above p, q, and e,
4. Denote the CRT-RSA key information as (N, e, dp, dq).

The values of the numerical CRT-RSA example are as follows.

N = 156512694533516563511957875673047248424661607738276291458198

561587305961477716057755389974955796966826998822273532598444

073354133765045009506842533224118977797362970342863277332916

054340774252180351940497697856282577719012074116639472745869

837430174148381260146968287423827682202356316536216812133505

242483721,

e = 870234913689148331430538521742157308545604222372763981584709,

dp = 105054920889694313236643515475986229698560379691663463225512

302039400442603589508021349904320178302089471845434045075084

406806664103314275213793412703224020726768063140359644831769

2200027809366346806478596786324049639383282415416033,

dq = 148571987412482932015696111740202311634967482494902349345138

137535116614527333185153973996870696864633712947488523072563

209530823364587205330955760387748864552847890724262288611841

4037628097962124364926249633316687480099589768273565.

In the CRT-RSA modulus factorization algorithm F (N, e, dp, dq), we choose m = 3, which
means that we need to apply the LLL algorithm to the lattice L with ω = 112. After running
for almost 2482 s, the approximately shortest basis vectors that meet the solvable condition are
obtained. The system of integer equations to be solved is then derived by transforming vectors into
polynomials. We finally solve it by applying the Gröbner basis computation in less than one second
and recover

p = 117661909776482824125451009716243933710550298018498329113532

519144170968368272845860632479094497702166147221073340778054

06168249462396739783087920487938303,

q = 133018998952878525725128760686837839812976256555609678813921

757867209306278453420877763154370943445528651863267874726515

62727232145095808167865245044585207.

One may check that N = pq does hold, so the CRT-RSA modulus factorization algorithm
F (N, e, dp, dq) successfully outputs the factorization of N = pq.

To show that the CRT-RSA key computation algorithm E(e, p− 1, q− 1) also runs in polyno-
mial time, we use the above CRT-RSA example and apply extended Euclidean algorithm. It runs in
less than one second and outputs dp and dq.

4. Discussion

To solve the proposed research problem, we apply the lattice-based method and
present an improved CRT-RSA modulus factorization algorithm in Section 3.2. The correct-
ness and validity of our factoring algorithm have been verified in Section 3.3. Our validation
experiments always output the desired modulus factorization for small CRT-exponents.
The running time depends on the particular lattice dimension and is in the range of 1 s to
106 s. Hence, the accuracy and speed of our factoring algorithm have been evaluated. Next,
we discuss the difference between previous studies and ours and show the superiority of
our approach.
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Maitra and Sarkar [35] have proposed a factorization attack using lattice-based method
when (N, e, dp, dq) are known. Assume that one has e ≈ Nα, dp < Nδ1 , dq < Nδ2 and
g := gcd(N − 1, edp − 1, edq − 1) ≈ Nγ. They demonstrated that N can be factored in
polynomial time in log N when 2α + δ1 + δ2 + 2γ < 3. For e ≈ N, i.e., α ≈ 1, we have
δ1 + δ2 < 1− 2γ. It implies that the above approach cannot reach the natural constraint
since γ is not a negligible term.

Relatively speaking, our factoring algorithm involves an error term gcd(N − 1, 2te)
instead of gcd(N − 1, edp − 1, edq − 1) and hence our result seems superior. To illustrate
the superiority, we examine and compare gcd(N − 1, edp − 1, edq − 1) in [35] and gcd(N −
1, 2te) of ours. We choose 1024-bit CRT-RSA moduli and the corresponding CRT exponents
of various bit sizes. The comparison results are given in Table 3. For the bit size of each
CRT exponent, we randomly take 100 trials and calculate the average value.

Table 3. The comparison of previous error term and ours.

CRT-Exponents Bit-Size gcd(N − 1, edp − 1, edq − 1) gcd(N − 1, 2te)

192 53 6.18
256 16.18 6.78
320 19.22 3.9
384 13.62 8.8
448 14.08 2.26
512 16.74 4.38
576 18.5 3.1
640 61.78 4.5
704 18.52 7
768 16.46 8.28
832 26.02 5
896 17.52 4.16
960 21.4 4.76

1024 27.94 3.22

We observe that our error term gcd(N− 1, 2te) equals to O(1), i.e, negligible compared
to e, dp, dq in most cases. Further, our error term is always less than the previous one
gcd(N − 1, edp − 1, edq − 1). Hence, our approach performs better than the previous
work [35]. As shown in Figure 1, the attack upper bound logN dpdq of ours is closer to
1. Thus, our improvement further strengthens the modulus factoring attack on CRT-RSA
when its key information is known.

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

192 256 320 384 448 512 576 640 704 768 832 896 9601024

lo
g
a
ri
th
m

bit-size

previous ours

Figure 1. The comparison of previous work and ours with respect to the attack upper bound. The
horizontal axis stands for the bit size of CRT exponents and the vertical one stands for the logarithm
of the attack bound.
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To illustrate the relation of our work to the field of attacking CRT-RSA, we compare and
classify recent related works as shown in Table 4. Our work further enriches cryptanalyses
of CRT-RSA. To be specific, the work not only makes further improvements on factoring
attacks, but also reveals the importance and correctness of the polynomial-time equivalence
of computing the CRT-RSA secret key and factoring. It can be seen that factoring attack is a
more essential security threat.

Table 4. The comparison and classification of related works and ours on cryptanalysis of CRT-RSA.

Related Works Attack Type Used Method

ours, [35] factoring attack lattice-based method
[37] factoring attack elliptic curve method

[6,12,17,18,38] small CRT-exponent attack lattice-based method
[19–23] partial key exposure attack lattice-based method
[24–28] side-channel attack power-based method
[39–41] key recovery attack tree-based method

Notice that we experimentally verify our CRT-RSA modulus factorization algorithm
for small CRT exponents. A limiting factor in achieving large CRT exponents is that we need
to perform the lattice reduction algorithm with large lattice dimension in such cases. The
running time increases rapidly, which leads to decreased attack efficiency, and is practically
infeasible. This disadvantage can be eliminated with optimized lattice reduction algorithms
and enhanced computing capability.

5. Conclusions

In this paper, we positively answer the research problem whether there exists a
polynomial-time algorithm outputting the modulus factorization if given the CRT-RSA key
information. Our work is summarized as follows.

• We study the security of CRT-RSA concerning its mathematical hardness assump-
tion. We propose the improved polynomial-time algorithm of factoring the CRT-RSA
modulus with the help of partial key exposure attack on CRT-RSA.

• Our asymptotic attack upper bound is superior to previous work [35]. Our factoring
attack is a more essential security threat compared to others.

• We verify the correctness and validity of the proposed CRT-RSA modulus factor-
ization algorithm with numerical experiments. Our validation experiments always
successfully output the factorization results for small CRT-exponents.

• We discuss our results with several comparisons to properly assess the proposed
factoring attack. Furthermore, we discuss the advantages and disadvantages of the
proposed algorithm.

More concretely, under the condition that edp, edq < N3/2, the factoring algorithm
takes the given CRT-RSA key information (N, e, dp, dq) as input and outputs the factoriza-
tion of modulus N = pq in polynomial time. We transform the original factorization prob-
lem into a modular polynomial solution problem. We apply Coppersmith’s lattice-based
method to find the root solution, which contains the prime factors of the modulus. Notice
that the polynomial-time equivalence of CRT-RSA key computation and factorization is
still not completely solved. One open problem is whether there exists a polynomial-time
algorithm for factoring the CRT-RSA modulus in the case of edp, edq > N3/2.

Future research should be devoted to the development of optimized lattice-reduction
algorithm in order to enhance the efficiency of the proposed factoring attack. In addition,
hybrid attacks based on the proposed CRT-RSA modulus factorization algorithm is an
interesting topic for future work.
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