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A B S T R A C T

RSA (Rivest–Shamir–Adleman) is a fundamental algorithm in information security for public key cryptography.
Recently, a novel attack scenario of RSA with two implicitly correlated private keys, i.e., implicit-key attack was
formulated. The lattice-based cryptanalytic strategy was proposed to factor RSA moduli using given implicit
hints referring to known quantities of unknown common bits distributed among unknown private keys. In this
paper, we review the simple basic scenario in which two RSA instances share known amounts of MSBs (most
significant bits) and LSBs (least significant bits). We extend it to a more complex situation, where the amounts
of MSBs and LSBs shared along with a few common blocks of middle bits are known. In addition, based on the
above theoretical analyses, we present a generalized implicit-key attack framework. Our results disclose the
vulnerability of RSA using correlated private keys with implicit information. Furthermore, numerical computer
experiments are conducted to assess the validity of basic and extended implicit-key attacks.
. Introduction

Since its invention, RSA [1] has been the most well-known cryp-
osystem in public key cryptography. The critical equation is 𝑒𝑑 ≡
mod 𝜑(𝑁) for the following definitions of 𝑒, 𝑑,𝑁 and 𝜑(𝑁). Modulus
= 𝑝𝑞 results from multiplying two prime numbers with the same

it-size. Two keys 𝑒, 𝑑 are called the public and private exponents,
espectively. Besides, 𝜑(𝑁) is Euler’s totient function and is equal to
𝑝 − 1)(𝑞 − 1). The encryption algorithm reckons 𝑐 = 𝑚𝑒 mod 𝑁 for a
laintext 𝑚 while the decryption algorithm computes 𝑐𝑑 mod 𝑁 for a
iphertext 𝑐. Its security has been studied in [2,3] etc. and among them,
oppersmith [4] introduced the lattice-based method. After that, fur-
her variant attacks were proposed such as [5–15]. In the lattice-based
ethod, a lattice reduction algorithm, namely the LLL algorithm [16]

s always used as the main tool and small roots (associated with secret
alues) of modular or integer polynomial equations are the crucial
argets to be solved.

The partial key exposure attack, which exposes some of the private
ey to the attacker, is one of the aforementioned attacks on RSA.
he first analysis was done by Boneh et al. in [17]. Ernst et al. [8]
roposed specific attacks that are effective up to full-size exponents
ccording to a common heuristic assumption. Recently, more related
orks [12–14] have been presented. This attack type resembles the

hallenge of breaking RSA using an oracle that explicitly discloses
everal consecutive bits of 𝑑. On the other hand, the implicit factoring
ttack was proposed by May and Ritzenhofen [18] using an oracle that

∗ Correspondence to: College of Information and Intelligence Engineering, Zhejiang Wanli University, Ningbo, China.
E-mail address: mczheng@zwu.edu.cn.

provides implicit information about 𝑝. Given two different RSA moduli
𝑁1 = 𝑝1𝑞1 and 𝑁2 = 𝑝2𝑞2 with 𝛼-bit 𝑞𝑖 and 𝑝1, 𝑝2 sharing at least
𝑡 many LSBs, one can recover 𝑞1 and 𝑞2 by the lattice-based method
if 𝑡 > 2(𝛼 + 2). The attack bound was improved to 𝑡 ≥ 𝑘

𝑘−1𝛼 using
multiple oracle queries in the case of 𝑘 RSA moduli. Following that,
new results have been presented, including shared MSBs and shared
middle bits [19] and other improved methods [11,15,20].

Recently, Zheng and Hu [21] concentrated on an interesting and
restrictive attack scenario in which implicit knowledge about the pri-
vate keys is known. This work was motivated by the implicit factoring
problem and the partial key exposure attack. Although expected, side-
channel attacks such as [22,23] might not provide explicit information
like some disclosed private key fragments. Instead, we might readily
determine a lot of implicit details about each pair of two correlated
private keys. In this paper, we informally state the implicit-key attack
problem as follows.

Let (𝑁1, 𝑒1, 𝑑1) and (𝑁2, 𝑒2, 𝑑2) be two different RSA instances for
𝑁1, 𝑁2 of the same bit-size. Assume that 𝑑1 and 𝑑2 are two distinct
private keys with the same bit-size since MSBs of the shorter key
can be padded with zero to make it true. Suppose that 𝑑1 and 𝑑2
have some implicit information known, namely the MSBs, LSBs and
other middle bits quantities they share. Based on the knowledge of
such implicitly correlated private keys, our goal is to factor 𝑁1 and
𝑁2 in polynomial time.
vailable online 28 July 2023
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Fig. 1. Two distinct examples of two correlated private keys with implicit information: (a) basic case; (b) complex case.
The illustrative examples are depicted in Figs. 1(a) and 1(b), which
divide the correlated private keys with implicit information into the
basic and complex cases. More concretely, the basic case analyzed
in [21], i.e., Fig. 1(a) demonstrates how 𝑑1, 𝑑2 share certain MSBs
and LSBs, leaving one diverse block in the middle. The quantities of
shared MSBs and LSBs constitute the pertinent implicit information.
Comparatively, the complex case, i.e., Fig. 1(b) shows that some MSBs,
LSBs, and middle bits of 𝑑1, 𝑑2 are shared, leaving multiple distinct
middle blocks. The relevant implicit information is the amounts of
several common middle bits.

The implicit-key attack is different from cryptanalyses dealing with
one RSA instance. The security was investigated in [24,25] when given
more RSA key pairs with the same modulus by lattice-based techniques.
In our opinion, it only takes partial advantage of the implicit infor-
mation about the private exponents. On the other hand, Hinek [26]
analyzed another scenario in which many RSA instances using the same
private key are given. The implicit information for this case is that all
the private exponents are identical. Our work covers the above two spe-
cial cases and makes further improvements. There are various scenarios
in which two separate RSA instances are used, e.g., the application
Dual RSA [27] to blind signatures and authentication. (Unfortunately,
our strategy cannot be applied to Dual RSA since there is no implicit
information of 𝑑1, 𝑑2 and even 𝑒1, 𝑒2 are identical.)

When two RSA instances are produced with backdoor keys [28]
or imperfect randomness [29,30], we might encounter the implicit-
key attack problem. Based on the theoretical interests, we consider the
following topics. One is to expose the RSA vulnerability further by using
weaker criteria like implicit disclosure about private keys. Moreover,
we investigate how previous attacks in the literature can be extended by
combining the partial key exposure attack and the implicit factorization
problem.

Recently, Zheng et al. [31] studied a similar problem, which focused
on the attack scenario when given two or more RSA instances having
an implicit relation of the related private keys. The authors proposed
lattice-based attacks by solving modular polynomial equations and ap-
plying subtle lattice techniques. We want to point out that our proposed
strategy is based on solving integer polynomial equations, which is
different from Zheng et al.’s attack. Besides, the prerequisites about
known implicit information required in ours and [31] are different. We
study the impact of various implicit relations between two correlated
private keys on the security of RSA. Conversely, Zheng et al. studied the
impact of the number of correlated private keys sharing a fixed implicit
relation.

In our solution to the implicit-key attack problem, an integer poly-
nomial equation is derived from two given RSA instances. The unknown
variables include the sums of unknown primes and the unknown dif-
ferences between two private keys. We adapt the Jochemsz–May strat-
egy [9,32] that summarizes Coppersmith’s techniques [4] and Coron’s
reformulation [7,10] for extracting the common root of multivariate
integer polynomial equations. We finally obtain the sums of unknown
primes and hence factorize given RSA moduli. To achieve theoretical ef-
fects, it relies on the following heuristic assumption. Similar to previous
2

works like [8,9,12–15,20,31,33] in the literature, Assumption 1 holds
in the practical experiments and will not be involved in the propositions
below.

Assumption 1. Our lattice-based attacks yield algebraically inde-
pendent integer polynomial equations, and the common root can be
efficiently solved using the Gröbner basis computation.

Unless otherwise specified, 𝑁 = 2𝑙 throughout this work refers to
an integer of the same bit-size as the given RSA moduli. The proposed
attack result in [21] with respect to the basic implicit-key attack on
standard RSA is expressed in Proposition 1. Because the relevant lattice
dimension may preferably be large, it should be noted that the offered
theoretical findings are asymptotic. Fortunately, the experimental re-
sults using lattices with low dimensions as provided in [21] are very
close to the theoretical ones.

Proposition 1 ([21]). Let 𝑁1 = 𝑝1𝑞1 and 𝑁2 = 𝑝2𝑞2 be two distinct
RSA moduli of the same bit-size 𝑙, where primes 𝑝1, 𝑞1, 𝑝2, 𝑞2 are of the
same bit-size 𝑙∕2. Let 𝑒1, 𝑒2, 𝑑1, 𝑑2 satisfy 𝑒1𝑑1 ≡ 1 mod 𝜑(𝑁1) and 𝑒2𝑑2 ≡
1 mod 𝜑(𝑁2), such that 𝑒1, 𝑒2 and 𝑑1, 𝑑2 have the same bit-size 𝑙 and 𝛿𝑙,
respectively. Suppose that 𝑑1 and 𝑑2 share 𝛽1𝑙 MSBs and 𝛽2𝑙 LSBs. Then
𝑁1 and 𝑁2 can be factored in polynomial time if

𝛿 <
(𝛽 + 1)(1 + 10𝜏 + 20𝜏2) − 10𝜏2 − 30𝜏3

4 + 30𝜏 + 40𝜏2
, (1)

where 𝛽 = 𝛽1 + 𝛽2 and 𝜏 ≥ 0. Let 𝜏0 denote the unique positive root that
satisfies

120𝑥4 + 180𝑥3 + (46 − 20𝛽)𝑥2 − 8𝛽𝑥 − 𝛽 − 1 = 0. (2)

Hence, the above condition on 𝛿 reaches its maximal upper bound that is

𝛿 <
(𝛽 + 1)(1 + 10𝜏0 + 20𝜏20 ) − 10𝜏20 − 30𝜏30

4 + 30𝜏0 + 40𝜏20
.

The parameter 𝜏0 is the optimal value that leads to the maximum
of the right side of (1). This value can be calculated using numerical
methods. Our insecure bound on 𝛿 for 𝛽 = 0 is 𝛿 < 0.280 (using
the optimized 𝜏0 = 0.120), which is weaker than Boneh–Durfee bound
𝛿 < 0.292 reported in [5]. It happens because we make use of two RSA
instances with no implicit information instead of only one instance.
Since more unknown variables might weaken the upper bound on 𝛿,
Boneh–Durfee attack works more efficiently when little or even no
implicit information is given. However, our approach has the advantage
of being more flexible in terms of attack cases and is useful in certain
situations where the Boneh–Durfee attack is not applicable.

We develop the findings and strategy in the previous work [21].
In addition to the basic attack, we have analyzed two special cases
and further propose an extended attack. In particular, we extend the
implicit-key attack to a more challenging scenario in which we have
any number 𝑛 of unknown middle blocks. However, as 𝑛 increases, our
strategy becomes less effective. One explanation is that the running
time of such an attack is exponential in parameter 𝑛. Another reason is
that when dealing with more middle blocks, the upper bounds on the
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unknown variables are smaller. In order to verify the validity of the
extended implicit-key attack, we provide the asymptotic cryptanalytic
results by numerical experiments for 𝑛 = 2.

Our contribution mainly includes the generalized implicit-key at-
acks on RSA and the validation experimental results, which are sum-
arized as follows. We study the security of RSA with two implicitly

orrelated private keys and propose the implicit-key attack problem.
e propose generalized implicit-key attacks of factoring RSA modulus

oncerning its theoretical security issue. We verify the correctness and
alidity of the proposed implicit-key attacks with numerical computer
xperiments and always successfully obtain the factorization results.

The rest is organized as follows. Section 2 outlines the requirements
or obtaining the desired common root by using the lattice reduction al-
orithms. The basic implicit-key attack when considering the basic case
escribed in Fig. 1(a) is reviewed in Section 3. The extended implicit-
ey attack when handling the complex case described in Fig. 1(b)
s presented in Section 4. Section 5 provides validation results with
etailed comparison according to extensive numerical experiments.
inally, Section 6 concludes the paper.

. Preliminaries

We introduce the LLL algorithm [16] and the lattice-based method
hat was proposed by Coppersmith [4] and further improved by
ochemsz and May [9]. The condition for finding the roots of integer
olynomial equations is given as a mathematical consequence of the
attice-based method. For more information, see [3,34].

The collection of all integer linear combinations of linearly inde-
endent vectors �⃗�1,… , �⃗�𝑚 is referred to as a lattice . Thus, it can be
ritten as

(�⃗�1,… , �⃗�𝑚) =

{ 𝑚
∑

𝑖=1
𝑧𝑖�⃗�𝑖 ∶ 𝑧𝑖 ∈ Z

}

.

e construct an 𝑚 × 𝑛 basis matrix 𝐵 by treating each 𝑛-dimensional
asis vector �⃗�𝑖 as a row. The lattice determinant is det() =

√

det(𝐵𝐵𝖳).
e only take into account a full-rank lattice with 𝑚 = 𝑛 since it

implifies the subsequent analysis and improves the attack efficiency.
his is a common simplification in the lattice-based method and does
ot affect the general definition of lattice determinant. Hence, we get
et() = |det(𝐵)| because 𝐵 is a square matrix.

Due to its effective running performance, the LLL algorithm [16]
s used to find approximately short lattice vectors. The approximately
hort lattice vectors refer to the LLL-reduced lattice vectors used in the
attice-based method. An approximately short lattice vector is a vector
hose length is close (within some constant multiples) to the shortest
on-zero vector in the lattice. These vectors play a crucial role because
hey allow us to further derive several integer equations we are trying
o solve. Given an 𝑚-dimensional lattice basis vector 𝑣𝑖 = (𝑣𝑖1 ,… , 𝑣𝑖𝑚 ),

its length (i.e., Euclidean norm) is defined as ‖𝑣𝑖‖ ∶= (
∑𝑚

𝑗=1 𝑣
2
𝑖𝑗
)1∕2.

Lemma 1 is used to establish the relationship between the lengths of
the reduced lattice vectors and the lattice determinant. On the basis of
its outputs, the following lemma (that was proven in [34, Theorem 4])
is presented.

Lemma 1 ([34]). Let lattice  be spanned by a given basis (�⃗�1, �⃗�2,… , �⃗�𝑚).
A reduced basis (𝑣1, 𝑣2,… , 𝑣𝑚) is derived from the LLL algorithm satisfying

‖𝑣𝑖‖ ≤ 2
𝑚(𝑚−1)
4(𝑚+1−𝑖) det()

1
𝑚+1−𝑖 , 1 ≤ 𝑖 ≤ 𝑚.

The running time is polynomial in the maximal component of input vectors
and lattice dimension 𝑚.

The following lemma (i.e., [34, Theorem 14]) is a direct general-
ization of Howgrave-Graham’s lemma [35], which provides a rule for
figuring out whether a modular equation’s root is also a root over the
integers. Given a polynomial 𝑔(𝑥1,… , 𝑥𝑛) =

∑

𝑎𝑖1 ,…,𝑖𝑛𝑥
𝑖1
1 ⋯ 𝑥𝑖𝑛𝑛 , its norm

∑ 2 1∕2
3

is defined as ‖𝑔(𝑥1,… , 𝑥𝑛)‖ ∶= ( |𝑎𝑖1 ,…,𝑖𝑛 | ) .
Lemma 2 ([34]). Let 𝑔(𝑥1,… , 𝑥𝑛) ∈ Z[𝑥1,… , 𝑥𝑛] be an integer polyno-
mial, which is a sum of at most 𝑚 monomials. Suppose that

1. 𝑔(𝑥(0)1 ,… , 𝑥(0)𝑛 ) ≡ 0 mod 𝑅 for a positive integer 𝑅, where |𝑥(0)1 | <
𝑋1, … , |𝑥(0)𝑛 | < 𝑋𝑛,

2. ‖𝑔(𝑥1𝑋1,… , 𝑥𝑛𝑋𝑛)‖ < 𝑅
√

𝑚
.

Then we have 𝑔(𝑥(0)1 ,… , 𝑥(0)𝑛 ) = 0 over the integers.

Thus, to solve modular or integer polynomial equations using Lem-
mas 1 and 2, we make use of the first 𝓁 many vectors outputted by the
LLL algorithm. It follows that one can construct an integer equation
system to solve the unknown variables if

2
𝑚(𝑚−1)

4(𝑚+1−𝓁) det()
1

𝑚+1−𝓁 < 𝑅
√

𝑚
.

It leads to

det() < 𝑅𝑚+1−𝓁2−
𝑚(𝑚−1)

4 𝑚− 𝑚+1−𝓁
2 .

As 𝓁 < 𝑚 ≪ 𝑅, with a small error term 𝜖, it can be further simplified
o det() ≤ 𝑅𝑚−𝜖 . Hence, we roughly derive a simplified asymptotic
ondition

det() < 𝑅𝑚. (3)

The Jochemsz–May strategy [9] is used to construct a triangular
lattice basis matrix. The lattice determinant det() is calculated as the
product of the diagonal elements of the constructed basis matrix. We
provide a general condition for solving small roots of integer polyno-
mial equations and sketch the lattice-based method. In practice, several
unknowns in RSA instances lead to an integer polynomial equation
used in the proposed lattice-based attacks. Because the lattice-based
method always regards a polynomial equation as a polynomial for
convenient writing and symbolic calculation, we may use polynomial
instead of polynomial equation in this sense. More concretely, we want
to find the root of an ℎ-variate integer polynomial 𝑓 (𝑥1,… , 𝑥ℎ) =
∑

𝑎𝑖1 ,…,𝑖ℎ𝑥
𝑖1
1 ⋯ 𝑥𝑖ℎℎ when conducting the proposed implicit-key attack.

First, as mentioned in Lemma 2, we need to compute the upper
bounds 𝑋𝑖 on unknown variables 𝑥𝑖 for 𝑖 = 1,… , ℎ. Moreover, 𝑋∞ is de-
fined as the highest potential value of a single term in 𝑓 (𝑥1, 𝑥2,… , 𝑥ℎ).
That is

𝑋∞ = ‖𝑓 (𝑥1𝑋1, 𝑥2𝑋2,… , 𝑥ℎ𝑋ℎ)‖∞
max

{

|𝑎𝑖1 ,𝑖2 ,…,𝑖ℎ |𝑋
𝑖1
1 𝑋𝑖2

2 ⋯𝑋𝑖ℎ
ℎ

}

. (4)

e then define

= 𝑋∞(𝑋1𝑋2 ⋯𝑋ℎ−2)𝑠−1(𝑋ℎ−1𝑋ℎ)𝑠−1+𝑡 (5)

or two non-negative integers 𝑠 and 𝑡 to be determined in the subse-
uent lattice construction.

Then we adapt the extended Jochemsz–May strategy [9] for finding
mall integer roots and use extra shifts of two variables 𝑥ℎ−1 and 𝑥ℎ. A
attice basis matrix is constructed via the coefficient vectors of the shift
olynomials, which is derived from two monomial sets 𝑆 and 𝑆𝑅. To
o so, we define

=
⋃

0≤𝑗ℎ−1 ,𝑗ℎ≤𝑡

{

𝑥𝑖11 𝑥
𝑖2
2 ⋯ 𝑥𝑖ℎ−2ℎ−2𝑥

𝑖ℎ−1+𝑗ℎ−1
ℎ−1 𝑥𝑖ℎ+𝑗ℎℎ ∶ 𝑥𝑖11 𝑥

𝑖2
2 ⋯ 𝑥𝑖ℎℎ ∈ 𝑓 𝑠−1},

and

𝑆𝑅 =
⋃

0≤𝑗ℎ−1 ,𝑗ℎ≤𝑡

{

𝑥𝑖11 𝑥
𝑖2
2 ⋯ 𝑥𝑖ℎ−2ℎ−2𝑥

𝑖ℎ−1+𝑗ℎ−1
ℎ−1 𝑥𝑖ℎ+𝑗ℎℎ ∶ 𝑥𝑖11 𝑥

𝑖2
2 ⋯ 𝑥𝑖ℎℎ ∈ 𝑓 𝑠}.

The parameters 𝑠 and 𝑡 are defined as two non-negative integers satis-
fying 𝑠 ≥ 1 and 𝑡 ≥ 0, which are used to control the number of elements
in the monomial sets 𝑆 and 𝑆𝑅 and also control the dimension of the
constructed lattice.

The constructions of specific shift polynomials will be given in
Section 3 and Section 4, respectively. Based on our lattice construc-

∏ℎ 𝑠𝑖 𝑠𝑔
tion, condition (3) finally reduces to 𝑖=1 𝑋𝑖 < 𝑋∞ . Here 𝑠𝑖 =
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𝑥𝑘11 ⋯𝑥𝑘ℎℎ ∈𝑆𝑅⧵𝑆
𝑘𝑖 is the sum of exponent 𝑘𝑖 over variable 𝑥𝑖 and 𝑠𝑔 = |𝑆|

is the cardinality of monomial set 𝑆. More details refer to the analysis
in Section 3.

Similar to the usage description of the lattice-based method in the
multivariate case in [34, Page 47]. We summarize the lattice-based
method to solve a multivariate integer polynomial equation in four
steps. The first step is to use 𝑓 (𝑥1,… , 𝑥ℎ) and known quantities for
generating two monomial sets 𝑆, 𝑆𝑅 and constructing shift polyno-
mials 𝑔(𝑥1,… , 𝑥ℎ) and 𝑔′(𝑥1,… , 𝑥ℎ) having a common root (𝑥′1,… , 𝑥′ℎ)
modulo 𝑅. The second step is to let �⃗�𝑖 be a row vector derived from
the coefficient vector of 𝑔(𝑥1𝑋1,… , 𝑥ℎ𝑋ℎ) and 𝑔′(𝑥1𝑋1,… , 𝑥ℎ𝑋ℎ) for all
1 ≤ 𝑖 ≤ 𝑚. Hence, one can generate the lattice  =

{

∑𝑚
𝑖=1 𝑧𝑖�⃗�𝑖 ∶ 𝑧𝑖 ∈ Z

}

.
The third step is to apply the LLL algorithm on . One can obtain the
first 𝓁 many reduced basis vectors 𝑣1,… , 𝑣𝓁 and transform the vectors
to integer polynomials 𝑓1(𝑥1,… , 𝑥ℎ),… , 𝑓𝓁(𝑥1,… , 𝑥ℎ) sharing the com-
mon root (𝑥′1,… , 𝑥′ℎ) over Z. The transformation is based on inverse
corresponding relationship used in the second step for converting the
coefficient vectors to lattice basis vectors. The last step is to check if
the derived polynomials 𝑓𝑖(𝑥1,… , 𝑥ℎ) for 1 ≤ 𝑖 ≤ 𝓁 along with the
original polynomial 𝑓 are algebraically independent. If so, the equation
system 𝑓𝑖(𝑥1,… , 𝑥ℎ) = 0 (including 𝑓 (𝑥1,… , 𝑥ℎ) = 0) can be solved
using the Gröbner basis computation. Hence, one extracts the desired
root (𝑥′1,… , 𝑥′ℎ).

Under the above process, the first 𝓁 many reduced vectors are
obtained. We discover a collection of polynomials 𝑓1,… , 𝑓𝓁 having
the shared root over the integers. Then the Gröbner basis computation
is employed for extracting the common root since it is efficient for
more variables. The running time mainly depends on computing the
reduced lattice basis matrix and recovering the desired root. For the
basic implicit-key attack, both of them can be done in polynomial time.
For the extended implicit-key attack, the running time is exponential in
the number of unknown middle blocks 𝑛.

3. Basic implicit-key attack

We review the basic implicit-key attack for two RSA instances
(𝑁1, 𝑒1, 𝑑1) and (𝑁2, 𝑒2, 𝑑2). We first consider the general case when
𝑒1, 𝑒2 are of arbitrary bit-size and 𝑑1, 𝑑2 share some MSBs and LSBs
leaving one different block in the middle. We start by considering the
typical scenario in which 𝑑1, 𝑑2 share some MSBs and LSBs, leaving one
diverse block in the middle, and 𝑒1, 𝑒2 are of arbitrary bit-size. Later we
focus on two special cases.

3.1. The general case

We show the following result for the general case in the basic
implicit-key attack, which was already presented in [21, Theorem 1].

Proposition 2 ([21]). Let 𝑁1 = 𝑝1𝑞1 and 𝑁2 = 𝑝2𝑞2 be two distinct
RSA moduli of the same bit-size 𝑙, where primes 𝑝1, 𝑞1, 𝑝2, 𝑞2 are of the
same bit-size 𝑙∕2. Let 𝑒1, 𝑒2, 𝑑1, 𝑑2 satisfy 𝑒1𝑑1 ≡ 1 mod 𝜑(𝑁1) and 𝑒2𝑑2 ≡
1 mod 𝜑(𝑁2), such that 𝑒1, 𝑒2 and 𝑑1, 𝑑2 have bit-size 𝛼1𝑙, 𝛼2𝑙 and 𝛿𝑙,
respectively. Suppose that 𝑑1 and 𝑑2 share 𝛽1𝑙 MSBs and 𝛽2𝑙 LSBs. Then
𝑁1 and 𝑁2 can be factored in polynomial time if

𝛿 <
(𝛼 + 𝛽 − 1)(1 + 10𝜏 + 20𝜏2) − 10𝜏2 − 30𝜏3

4 + 30𝜏 + 40𝜏2
− 𝛼

2
+ 1, (6)

where 𝛼 = 𝛼1 + 𝛼2, 𝛽 = 𝛽1 + 𝛽2 and 𝜏 ≥ 0. Let 𝜏0 denote the only positive
real root satisfying

120𝑥4 + 180𝑥3 + (86 − 20𝛼 − 20𝛽)𝑥2

+(16 − 8𝛼 − 8𝛽)𝑥 − 𝛼 − 𝛽 + 1 = 0. (7)

The above condition on 𝛿 reaches its maximal upper bound that is

𝛿 <
(𝛼 + 𝛽 − 1)(1 + 10𝜏0 + 20𝜏20 ) − 10𝜏20 − 30𝜏30

2
− 𝛼 + 1.
4

4 + 30𝜏0 + 40𝜏0 2
Proof. The key equation 𝑒𝑑 ≡ 1 mod 𝜑(𝑁), with two positive integers
𝑘1 and 𝑘2, gives us
{

𝑒1𝑑1 = 𝑘1(𝑁1 + 1 − 𝑝1 − 𝑞1) + 1,

𝑒2𝑑2 = 𝑘2(𝑁2 + 1 − 𝑝2 − 𝑞2) + 1.

Multiplying two equations by 𝑒2, 𝑒1 respectively and then subtracting,
we have

𝑒1𝑒2(𝑑1 − 𝑑2)

𝑒2𝑘1(𝑁1 + 1 − 𝑝1 − 𝑞1) + 𝑒2 − 𝑒1𝑘2(𝑁2 + 1 − 𝑝2 − 𝑞2) − 𝑒1. (8)

Note that 𝑁1, 𝑁2 are of the same bit-size 𝑙 for 𝑁 = 2𝑙 as mentioned
bove. Consider that we are given 𝑑1 and 𝑑2 of the same bit-size 𝛿𝑙
haring 𝛽1𝑙 MSBs and 𝛽2𝑙 LSBs. Additionally, 𝛽1 or 𝛽2 can be estimated
s 0. Hence, it implies that
{

𝑑1 = 𝑑002(𝛿−𝛽1)𝑙 + 𝑑112𝛽2𝑙 + 𝑑01,

𝑑2 = 𝑑002(𝛿−𝛽1)𝑙 + 𝑑212𝛽2𝑙 + 𝑑01.
(9)

ere 𝑑00 and 𝑑01 denote the respective shared MSBs and LSBs whilst
11 and 𝑑21 denote two different middle bit-blocks of the private keys.
ubstituting (9) into (8), it can be rewritten as

1𝑒2(𝑑11 − 𝑑21)2𝛽2𝑙

𝑒2𝑘1(𝑁1 + 1 − 𝑝1 − 𝑞1) − 𝑒1𝑘2(𝑁2 + 1 − 𝑝2 − 𝑞2) + 𝑒2 − 𝑒1.

t further reduces to

1𝑒22𝛽2𝑙(𝑑21 − 𝑑11) + 𝑒2(𝑁1 + 1)𝑘1 − 𝑒1(𝑁2 + 1)𝑘2
𝑒2𝑘1(𝑝1 + 𝑞1) + 𝑒1𝑘2(𝑝2 + 𝑞2) + (𝑒2 − 𝑒1) = 0.

We list the known variables (denoted by 𝑎𝑖) and the unknown ones
denoted by 𝑥𝑖) as follows.

𝑎1 = 𝑒1𝑒22𝛽2𝑙 ,

𝑎2 = 𝑒2(𝑁1 + 1),

𝑎3 = −𝑒1(𝑁2 + 1),

𝑎4 = −𝑒2,

𝑎5 = 𝑒1,

𝑎6 = 𝑒2 − 𝑒1.

and

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑥1 = 𝑑21 − 𝑑11,

𝑥2 = 𝑘1,

𝑥3 = 𝑘2,

𝑥4 = 𝑝1 + 𝑞1,

𝑥5 = 𝑝2 + 𝑞2.

ur goal is to discover the solution to the following integer polynomial,

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥2𝑥4 + 𝑎5𝑥3𝑥5 + 𝑎6. (10)

e simply do division to make the polynomial irreducible if 𝑒1 and
2 have a nontrivial common divisor. In order to apply Coppersmith’s
echniques, the norm of the unknown variables should be small enough.

The upper bounds 𝑋𝑖 on each 𝑥𝑖 are calculated as follows for given
1 = 𝑁𝛼1 and 𝑒2 = 𝑁𝛼2 of arbitrary bit-size. Let 𝛽 = 𝛽1 + 𝛽2, we have

𝑋1 = 𝑁𝛿−𝛽 , 𝑋2 = 𝑁𝛼1+𝛿−1, 𝑋3 = 𝑁𝛼2+𝛿−1, 𝑋4 = 𝑋5 = 𝑁1∕2. (11)

As we introduced the definition of the maximal norm 𝑋∞ in (4), it can
be computed as

𝑋∞ = 𝑁𝛼+𝛿 , 𝛼 = 𝛼1 + 𝛼2. (12)

We use two extra shifts of 𝑥4 and 𝑥5 for solving the above integer
polynomial (10). For two non-negative integers 𝑠 ≥ 1 and 𝑡 ≥ 0, the
following monomial sets 𝑆 and 𝑆𝑅 are built.

𝑆 =
⋃

0≤𝑗4 ,𝑗5≤𝑡

{

𝑥𝑖11 𝑥
𝑖2
2 𝑥

𝑖3
3 𝑥

𝑖4+𝑗4
4 𝑥𝑖5+𝑗55 ∶ 𝑥𝑖11 𝑥

𝑖2
2 𝑥

𝑖3
3 𝑥

𝑖4
4 𝑥

𝑖5
5 ∈ 𝑓 𝑠−1},

𝑆𝑅 =
⋃

0≤𝑗4 ,𝑗5≤𝑡

{

𝑥𝑖11 𝑥
𝑖2
2 𝑥

𝑖3
3 𝑥

𝑖4+𝑗4
4 𝑥𝑖5+𝑗55 ∶ 𝑥𝑖11 𝑥

𝑖2
2 𝑥

𝑖3
3 𝑥

𝑖4
4 𝑥

𝑖5
5 ∈ 𝑓 𝑠}.

By computing the expansion of 𝑓 𝑠−1 and 𝑓 𝑠, we know the relationship
𝑖1 𝑖2 𝑖3 𝑖4 𝑖5
between monomials 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 in 𝑆, 𝑆𝑅 and the corresponding
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exponents 𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5. We have

𝑥𝑖11 𝑥
𝑖2
2 𝑥

𝑖3
3 𝑥

𝑖4
4 𝑥

𝑖5
5 ∈ 𝑆 ⇔

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑖1 = 0,… , 𝑠 − 1,

𝑖2 = 0,… , 𝑠 − 1 − 𝑖1,

𝑖3 = 0,… , 𝑠 − 1 − 𝑖1 − 𝑖2,

𝑖4 = 0,… , 𝑖2 + 𝑡,

𝑖5 = 0,… , 𝑖3 + 𝑡.

𝑥𝑖11 𝑥
𝑖2
2 𝑥

𝑖3
3 𝑥

𝑖4
4 𝑥

𝑖5
5 ∈ 𝑆𝑅 ⇔

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑖1 = 0,… , 𝑠,

𝑖2 = 0,… , 𝑠 − 𝑖1,

𝑖3 = 0,… , 𝑠 − 𝑖1 − 𝑖2,

𝑖4 = 0,… , 𝑖2 + 𝑡,

𝑖5 = 0,… , 𝑖3 + 𝑡.

We require the constant term of 𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5), i.e., 𝑎6 to be 1.
Thus, we define a modular polynomial 𝑓 ′ = 𝑎−16 𝑓 mod 𝑅, where

𝑅 = 𝑋∞𝑋𝑠−1
1 𝑋𝑠−1

2 𝑋𝑠−1
3 𝑋𝑠−1+𝑡

4 𝑋𝑠−1+𝑡
5 (13)

as mentioned in (5). The shift polynomials 𝑔 and 𝑔′ according to 𝑆 and
𝑆𝑅 are defined as follows.

𝑔 ∶
𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 𝑓 ′ ⋅ 𝑅

𝑋∞𝑋𝑘1
1 𝑋𝑘2

2 𝑋𝑘3
3 𝑋𝑘4

4 𝑋𝑘5
5

, 𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 ∈ 𝑆,

𝑔′ ∶ 𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 𝑅, 𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 ∈ 𝑆𝑅 ⧵ 𝑆.

The coefficient vectors of 𝑔 and 𝑔′ are used in the construction
of lattice , where 𝑥𝑖𝑋𝑖 is substituted for each 𝑥𝑖. As discussed in
ection 2, we need to compute det() to apply the condition (3). In
ur lattice construction, the diagonal elements of 𝑔 and 𝑔′ are equal to
𝑅
𝑋∞

and 𝑋𝑘1
1 𝑋𝑘2

2 𝑋𝑘3
3 𝑋𝑘4

4 𝑋𝑘5
5 𝑅, respectively. So it implies

𝑅
𝑋∞

)𝑠𝑔
𝑋𝑠1

1 𝑋𝑠2
2 𝑋𝑠3

3 𝑋𝑠4
4 𝑋𝑠5

5 𝑅𝑠𝑅 < 𝑅𝑚,

where 𝑠𝑔 = |𝑆|, 𝑠𝑖 =
∑

𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 ∈𝑆𝑅⧵𝑆
𝑘𝑖, 𝑠𝑅 = |𝑆𝑅 ⧵ 𝑆| and

𝑚 = |𝑆𝑅|. Furthermore, we have 𝑚 = |𝑆𝑅| = |𝑆| + |𝑆𝑅 ⧵ 𝑆| = 𝑠𝑔 + 𝑠𝑅.
ence, it can be finally reduced to
𝑠1
1 𝑋𝑠2

2 𝑋𝑠3
3 𝑋𝑠4

4 𝑋𝑠5
5 < 𝑋

𝑠𝑔
∞ , (14)

here 𝑠𝑖 =
∑

𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 ∈𝑆𝑅⧵𝑆
𝑘𝑖 and 𝑠𝑔 = |𝑆|.

We now calculate 𝑠𝑖 for 𝑖 = 1, 2, 3, 4, 5 and 𝑠𝑔 , 𝑚 by the above
eduction. Based on their definitions, we have

𝑠1 =
∑

𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 ∈𝑆𝑅⧵𝑆

𝑘1

=
𝑠
∑

𝑖1=0

𝑠−𝑖1
∑

𝑖2=0

𝑠−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
𝑖1 −

𝑠−1
∑

𝑖1=0

𝑠−1−𝑖1
∑

𝑖2=0

𝑠−1−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
𝑖1

= 𝑠5

120
+ 𝑠4𝑡

12
+ 𝑠3𝑡2

6
+ 𝑜(𝑠5),

𝑠2 =
∑

𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 ∈𝑆𝑅⧵𝑆

𝑘2

=
𝑠
∑

𝑖1=0

𝑠−𝑖1
∑

𝑖2=0

𝑠−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
𝑖2 −

𝑠−1
∑

𝑖1=0

𝑠−1−𝑖1
∑

𝑖2=0

𝑠−1−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
𝑖2

= 𝑠5

60
+ 𝑠4𝑡

8
+ 𝑠3𝑡2

6
+ 𝑜(𝑠5),

𝑠3 =
∑

𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 ∈𝑆𝑅⧵𝑆

𝑘3

=
𝑠
∑

𝑠−𝑖1
∑

𝑠−𝑖1−𝑖2
∑

𝑖2+𝑡
∑

𝑖3+𝑡
∑

𝑖3 −
𝑠−1
∑

𝑠−1−𝑖1
∑

𝑠−1−𝑖1−𝑖2
∑

𝑖2+𝑡
∑

𝑖3+𝑡
∑

𝑖3
5

𝑖1=0 𝑖2=0 𝑖3=0 𝑖4=0 𝑖5=0 𝑖1=0 𝑖2=0 𝑖3=0 𝑖4=0 𝑖5=0
c

= 𝑠5

60
+ 𝑠4𝑡

8
+ 𝑠3𝑡2

6
+ 𝑜(𝑠5),

𝑠4 =
∑

𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 ∈𝑆𝑅⧵𝑆

𝑘4

=
𝑠
∑

𝑖1=0

𝑠−𝑖1
∑

𝑖2=0

𝑠−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
𝑖4 −

𝑠−1
∑

𝑖1=0

𝑠−1−𝑖1
∑

𝑖2=0

𝑠−1−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
𝑖4

= 𝑠5

120
+ 𝑠4𝑡

12
+ 𝑠3𝑡2

4
+ 𝑠2𝑡3

4
+ 𝑜(𝑠5),

𝑠5 =
∑

𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 ∈𝑆𝑅⧵𝑆

𝑘5

=
𝑠
∑

𝑖1=0

𝑠−𝑖1
∑

𝑖2=0

𝑠−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
𝑖5 −

𝑠−1
∑

𝑖1=0

𝑠−1−𝑖1
∑

𝑖2=0

𝑠−1−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
𝑖5

= 𝑠5

120
+ 𝑠4𝑡

12
+ 𝑠3𝑡2

4
+ 𝑠2𝑡3

4
+ 𝑜(𝑠5),

𝑔 = |𝑆| =
𝑠−1
∑

𝑖1=0

𝑠−1−𝑖1
∑

𝑖2=0

𝑠−1−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
1

= 𝑠5

120
+ 𝑠4𝑡

12
+ 𝑠3𝑡2

6
+ 𝑜(𝑠5),

𝑚 = |𝑆𝑅| =
𝑠
∑

𝑖1=0

𝑠−𝑖1
∑

𝑖2=0

𝑠−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
1

= 𝑠5

120
+ 𝑠4𝑡

12
+ 𝑠3𝑡2

6
+ 𝑜(𝑠5).

fter tedious computation and taking 𝑡 = 𝜏𝑠 for 𝜏 ≥ 0 and omitting
ower terms 𝑜(𝑠5), we obtain

1 = 𝑠𝑔 = 1
120

(1 + 10𝜏 + 20𝜏2)𝑠5,

2 = 𝑠3 =
1
120

(2 + 15𝜏 + 20𝜏2)𝑠5,

4 = 𝑠5 =
1
120

(1 + 10𝜏 + 30𝜏2 + 30𝜏3)𝑠5

(15)

The values of 𝑋𝑖, 𝑋∞, 𝑠𝑖 and 𝑠𝑔 are substituted into the condi-
ion (14) and it gives

1
120 (𝛿−𝛽)(1+10𝜏+20𝜏

2)𝑠5𝑁
1
120 (𝛼1+𝛿−1)(2+15𝜏+20𝜏

2)𝑠5

𝑁
1

120 (𝛼2+𝛿−1)(2+15𝜏+20𝜏
2)𝑠5𝑁

1
240 (1+10𝜏+30𝜏

2+30𝜏3)𝑠5

×𝑁
1

240 (1+10𝜏+30𝜏
2+30𝜏3)𝑠5 < 𝑁

1
120 (𝛼+𝛿)(1+10𝜏+20𝜏

2)𝑠5 .

We deal with the exponents over 𝑁 (eliminating the term 𝑠5) and obtain

(𝛿 − 𝛽)(1 + 10𝜏 + 20𝜏2) + (𝛼 + 2𝛿 − 2)(2 + 15𝜏 + 20𝜏2)

1 + 10𝜏 + 30𝜏2 + 30𝜏3 < (𝛼 + 𝛿)(1 + 10𝜏 + 20𝜏2).

his results in

<
(𝛼 + 𝛽 − 1)(1 + 10𝜏 + 20𝜏2) − 10𝜏2 − 30𝜏3

4 + 30𝜏 + 40𝜏2
− 𝛼

2
+ 1.

For known 𝛼 and 𝛽, there exists an optimal 𝜏0 maximizing the right
side. By calculating the derivative with respect to 𝜏, we take the unique
positive 𝜏0 satisfying

120𝑥4 + 180𝑥3 + (86 − 20𝛼 − 20𝛽)𝑥2 + (16 − 8𝛼 − 8𝛽)𝑥 − 𝛼 − 𝛽 + 1 = 0.

ence, the above condition on 𝛿 reaches its maximal upper bound that
s

<
(𝛼 + 𝛽 − 1)(1 + 10𝜏0 + 20𝜏20 ) − 10𝜏20 − 30𝜏30

4 + 30𝜏0 + 40𝜏20
− 𝛼

2
+ 1.

We follow the four-step summary of the lattice-based method and
finally derive four polynomials 𝑓1, 𝑓2, 𝑓3, 𝑓4 separate from 𝑓 under the
above analysis and condition. Additionally, 𝑓, 𝑓1, 𝑓2, 𝑓3 and 𝑓4 share the
ommon root (𝑑 −𝑑 , 𝑘 , 𝑘 , 𝑝 + 𝑞 , 𝑝 + 𝑞 ) over the integers. Finally,
21 11 1 2 1 1 2 2
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we extract 𝑝1 + 𝑞1 and 𝑝2 + 𝑞2, which result in the factorization of 𝑁1
nd 𝑁2 respectively.

The running time is mainly dominated by the LLL algorithm, which
s polynomial in the maximal component of input vectors and lattice
imension as stated in Lemma 1. The maximal component of input
ectors related to multiples of 𝑋𝑖 and 𝑋∞ is polynomial in 𝑁 and the
attice dimension 𝑚 is polynomial in 𝑠5. Thus, the time complexity is

polynomial in 𝑁, 𝑠 and the factorization works in polynomial time. □

We briefly explain how to prove Proposition 1 since it is a special
case of Proposition 2. Suppose that 𝑒1, 𝑒2 are of full bit-size, i.e., 𝛼 =
1 + 𝛼2 = 1 + 1 = 2, 𝑁1 and 𝑁2 can be factored in polynomial time if

<
(𝛽 + 1)(1 + 10𝜏 + 20𝜏2) − 10𝜏2 − 30𝜏3

4 + 30𝜏 + 40𝜏2
,

here 𝛽 = 𝛽1 + 𝛽2 and 𝜏 ≥ 0. If the unique positive root 𝜏0 satisfies

20𝑥4 + 180𝑥3 + (46 − 20𝛽)𝑥2 − 8𝛽𝑥 − 𝛽 − 1 = 0,

we obtain the maximal upper bound on 𝛿 that is

𝛿 <
(𝛽 + 1)(1 + 10𝜏0 + 20𝜏20 ) − 10𝜏20 − 30𝜏30

4 + 30𝜏0 + 40𝜏20
.

3.2. Two special cases

We focus on two special cases, namely given two RSA instances with
a common modulus or a common private key. The implicit-key attack
for two RSA instances with a given common modulus is presented first.

Proposition 3. Let 𝑁 = 𝑝𝑞 be an RSA modulus of bit-size 𝑙, where primes
𝑝, 𝑞 are of the same bit-size 𝑙∕2. Let 𝑒1, 𝑒2, 𝑑1, 𝑑2 satisfy 𝑒1𝑑1 ≡ 1 mod 𝜑(𝑁)
and 𝑒2𝑑2 ≡ 1 mod 𝜑(𝑁), such that 𝑒1, 𝑒2 and 𝑑1, 𝑑2 are of bit-size 𝛼1𝑙, 𝛼2𝑙
and 𝛿𝑙, respectively. Suppose that 𝑑1 and 𝑑2 share 𝛽1𝑙 MSBs and 𝛽2𝑙 LSBs.
Then 𝑁 can be factored in polynomial time if

𝛿 <
(𝛼 + 𝛽)(4 + 8𝜏) − 3 − 8𝜏 − 6𝜏2

4(3 + 4𝜏)
− 𝛼

2
+ 1,

here 𝛼 = 𝛼1 + 𝛼2, 𝛽 = 𝛽1 + 𝛽2 and 𝜏 ≥ 0. Let

𝜏0 =
−9 +

√

48(𝛼 + 𝛽) + 9
12

that maximizes the right side of the above condition on 𝛿. By substituting 𝜏0
into the above condition, it reaches the maximal upper bound that is

𝛿 <
8𝛽 + 17 −

√

48(𝛼 + 𝛽) + 9
16

. (16)

roof. Based on the analysis of the general case, we have a new integer
olynomial for the same modulus 𝑁 ,

𝑁 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥2𝑥4 + 𝑎5𝑥3𝑥4 + 𝑎6.

The known and unknown variables are identical to those introduced in
Section 3.1 except for 𝑥4 = 𝑥5 and 𝑁1 = 𝑁2 = 𝑁 . Besides, the upper
bounds 𝑋𝑖 and 𝑋∞ are the same as (11) and (12). Concretely, we have
𝑋1 = 𝑁𝛿−𝛽 , 𝑋2 = 𝑁𝛼1+𝛿−1, 𝑋3 = 𝑁𝛼2+𝛿−1, 𝑋4 = 𝑁1∕2 and 𝑋∞ = 𝑁𝛼+𝛿 .

We then build a refined lattice to discover the root of
𝑓𝑁 (𝑥1, 𝑥2, 𝑥3, 𝑥4). The procedure is similar and we skip over its detailed
construction. We show the monomials that belong to 𝑆 and 𝑆𝑅 for two
negative integers 𝑠 ≥ 1 and 𝑡 ≥ 0 as follows.

𝑥𝑖11 𝑥
𝑖2
2 𝑥

𝑖3
3 𝑥

𝑖4
4 ∈ 𝑆 ⇔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖1 = 0,… , 𝑠 − 1,

𝑖2 = 0,… , 𝑠 − 1 − 𝑖1,

𝑖3 = 0,… , 𝑠 − 1 − 𝑖1 − 𝑖2,

𝑖4 = 0,… , 𝑖2 + 𝑖3 + 𝑡.

𝑥𝑖11 𝑥
𝑖2
2 𝑥

𝑖3
3 𝑥

𝑖4
4 ∈ 𝑆𝑅 ⇔

⎧

⎪

⎪

⎨

⎪

⎪

𝑖1 = 0,… , 𝑠,

𝑖2 = 0,… , 𝑠 − 𝑖1,

𝑖3 = 0,… , 𝑠 − 𝑖1 − 𝑖2,
6

⎩

𝑖4 = 0,… , 𝑖2 + 𝑖3 + 𝑡.
Similarly, we calculate each 𝑠𝑖 for 𝑖 = 1, 2, 3, 4 and 𝑠𝑔 , 𝑚 based on
their definitions as follows.

𝑠1 =
∑

𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 ∈𝑆𝑅⧵𝑆

𝑘1

=
𝑠
∑

𝑖1=0

𝑠−𝑖1
∑

𝑖2=0

𝑠−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑖3+𝑡
∑

𝑖4=0
𝑖1 −

𝑠−1
∑

𝑖1=0

𝑠−1−𝑖1
∑

𝑖2=0

𝑠−1−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑖3+𝑡
∑

𝑖4=0
𝑖1

= 𝑠4

12
+ 𝑠3𝑡

6
+ 𝑜(𝑠4),

𝑠2 =
∑

𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 ∈𝑆𝑅⧵𝑆

𝑘2

=
𝑠
∑

𝑖1=0

𝑠−𝑖1
∑

𝑖2=0

𝑠−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑖3+𝑡
∑

𝑖4=0
𝑖2 −

𝑠−1
∑

𝑖1=0

𝑠−1−𝑖1
∑

𝑖2=0

𝑠−1−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑖3+𝑡
∑

𝑖4=0
𝑖2

= 𝑠4

8
+ 𝑠3𝑡

6
+ 𝑜(𝑠4),

𝑠3 =
∑

𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 ∈𝑆𝑅⧵𝑆

𝑘3

=
𝑠
∑

𝑖1=0

𝑠−𝑖1
∑

𝑖2=0

𝑠−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑖3+𝑡
∑

𝑖4=0
𝑖3 −

𝑠−1
∑

𝑖1=0

𝑠−1−𝑖1
∑

𝑖2=0

𝑠−1−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑖3+𝑡
∑

𝑖4=0
𝑖3

= 𝑠4

8
+ 𝑠3𝑡

6
+ 𝑜(𝑠4),

𝑠4 =
∑

𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 ∈𝑆𝑅⧵𝑆

𝑘4

=
𝑠
∑

𝑖1=0

𝑠−𝑖1
∑

𝑖2=0

𝑠−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑖3+𝑡
∑

𝑖4=0
𝑖4 −

𝑠−1
∑

𝑖1=0

𝑠−1−𝑖1
∑

𝑖2=0

𝑠−1−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑖3+𝑡
∑

𝑖4=0
𝑖4

= 𝑠4

8
+ 𝑠3𝑡

3
+ 𝑠2𝑡2

4
+ 𝑜(𝑠4),

𝑔 = |𝑆| =
𝑠−1
∑

𝑖1=0

𝑠−1−𝑖1
∑

𝑖2=0

𝑠−1−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑖3+𝑡
∑

𝑖4=0
1

= 𝑠4

12
+ 𝑠3𝑡

6
+ 𝑜(𝑠4),

𝑚 = |𝑆𝑅| =
𝑠
∑

𝑖1=0

𝑠−𝑖1
∑

𝑖2=0

𝑠−𝑖1−𝑖2
∑

𝑖3=0

𝑖2+𝑖3+𝑡
∑

𝑖4=0
1

= 𝑠4

12
+ 𝑠3𝑡

6
+ 𝑜(𝑠4).

y taking 𝑡 = 𝜏𝑠 for 𝜏 ≥ 0, we have

1 = 𝑠𝑔 = 1
12

(1 + 2𝜏)𝑠4,

2 = 𝑠3 =
1
24

(3 + 4𝜏)𝑠4,

𝑠4 =
1
24

(3 + 8𝜏 + 6𝜏2)𝑠4.

Substituting 𝑋𝑖, 𝑠𝑖, 𝑋∞ and 𝑠𝑔 into 𝑋𝑠1
1 𝑋𝑠2

2 𝑋𝑠3
3 𝑋𝑠4

4 < 𝑋
𝑠𝑔
∞ and dealing

ith the exponents over 𝑁 , we obtain

𝛿 − 𝛽)(2 + 4𝜏) + (𝛼 + 2𝛿 − 2)(3 + 4𝜏) + 3 + 8𝜏 + 6𝜏2
2

< (𝛼 + 𝛿)(2 + 4𝜏).

his results in

<
(𝛼 + 𝛽)(4 + 8𝜏) − 3 − 8𝜏 − 6𝜏2

4(3 + 4𝜏)
− 𝛼

2
+ 1.

By calculating the derivative concerning 𝜏, the right side can be maxi-
mized at

𝜏 =
−9 +

√

48(𝛼 + 𝛽) + 9

0 12
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and plugging this optimized 𝜏0 in the above inequality for 𝛿 gives

<
8𝛽 + 17 −

√

48(𝛼 + 𝛽) + 9
16

.

We follow the four-step summary of the lattice-based method and
inally obtain three polynomials 𝑓1, 𝑓2, 𝑓3 apart from 𝑓𝑁 under the
bove analysis and condition. The polynomials share the common root
𝑑21 − 𝑑11, 𝑘1, 𝑘2, 𝑝 + 𝑞) over the integers. Finally, 𝑝 + 𝑞 is extracted and
irectly leads to the factorization of 𝑁 .

The running time is mainly dominated by the LLL algorithm, which
s polynomial in the maximal component of input vectors and lattice
imension as stated in Lemma 1. The maximal component of input
ectors related to multiples of 𝑋𝑖 and 𝑋∞ is polynomial in 𝑁 and the
attice dimension 𝑚 is polynomial in 𝑠4. Thus, the time complexity is

polynomial in 𝑁, 𝑠 and the factorization works in polynomial time. □

The implicit-key attack for two RSA instances with a shared private
ey is then presented.

roposition 4. Let 𝑁1 = 𝑝1𝑞1 and 𝑁2 = 𝑝2𝑞2 be two distinct RSA moduli
of the same bit-size 𝑙, where primes 𝑝1, 𝑞1, 𝑝2, 𝑞2 are of the same bit-size 𝑙∕2.
et 𝑒1, 𝑒2, 𝑑 satisfy 𝑒1𝑑 ≡ 1 mod 𝜑(𝑁1) and 𝑒2𝑑 ≡ 1 mod 𝜑(𝑁2), such that
1, 𝑒2 and 𝑑 are of bit-size 𝛼1𝑙, 𝛼2𝑙 and 𝛿𝑙, respectively. Then 𝑁1 and 𝑁2
an be factored in polynomial time if

<
3 − 𝛼 + (16 − 4𝛼)𝜏 + 6𝜏2 − 12𝜏3

3 + 16𝜏 + 12𝜏2
, (17)

where 𝛼 = 𝛼1+𝛼2 and 𝜏 ≥ 0 Let 𝜏0 denote the unique positive 𝜏 that satisfies

36𝑥4 + 96𝑥3 + (51 − 12𝛼)𝑥2 + (9 − 6𝛼)𝑥 − 𝛼 = 0. (18)

Hence, the above condition on 𝛿 reaches its maximal upper bound that is

<
3 − 𝛼 + (16 − 4𝛼)𝜏0 + 6𝜏20 − 12𝜏30

3 + 16𝜏0 + 12𝜏20
.

roof. Based on the analysis of the general case, we have a new integer
olynomial for the same private key 𝑑,

𝑑 (𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥2𝑥4 + 𝑎5𝑥3𝑥5 + 𝑎6.

he known and unknown variables are identical to those introduced in
ection 3.1 except for 𝑥1 = 0. Besides, the upper bounds 𝑋𝑖 and 𝑋∞ are

the same as (11) and (12). Thus, we have 𝑋2 = 𝑁𝛼1+𝛿−1, 𝑋3 = 𝑁𝛼2+𝛿−1,
4 = 𝑋5 = 𝑁1∕2, and 𝑋∞ = 𝑁𝛼+𝛿 .

We then build another refined lattice to find the root of
𝑑 (𝑥2, 𝑥3, 𝑥4, 𝑥5). We show the monomials that belong to 𝑆 and 𝑆𝑅 for

two negative integers 𝑠 ≥ 1 and 𝑡 ≥ 0 as follows and skip over its
detailed construction as well.

𝑥𝑖22 𝑥
𝑖3
3 𝑥

𝑖4
4 𝑥

𝑖5
5 ∈ 𝑆 ⇔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖2 = 0,… , 𝑠 − 1,

𝑖3 = 0,… , 𝑠 − 1 − 𝑖2,

𝑖4 = 0,… , 𝑖2 + 𝑡,

𝑖5 = 0,… , 𝑖3 + 𝑡.

𝑥𝑖22 𝑥
𝑖3
3 𝑥

𝑖4
4 𝑥

𝑖5
5 ∈ 𝑆𝑅 ⇔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖2 = 0,… , 𝑠,

𝑖3 = 0,… , 𝑠 − 𝑖2,

𝑖4 = 0,… , 𝑖2 + 𝑡,

𝑖5 = 0,… , 𝑖3 + 𝑡.

Similarly, we calculate each 𝑠𝑖 for 𝑖 = 2, 3, 4, 5 and 𝑠𝑔 , 𝑚 based on their
definitions as follows.

𝑠2 =
∑

𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 ∈𝑆𝑅⧵𝑆

𝑘2

=
𝑠
∑

𝑠−𝑖2
∑

𝑖2+𝑡
∑

𝑖3+𝑡
∑

𝑖2 −
𝑠−1
∑

𝑠−1−𝑖2
∑

𝑖2+𝑡
∑

𝑖3+𝑡
∑

𝑖2
7

𝑖2=0 𝑖3=0 𝑖4=0 𝑖5=0 𝑖2=0 𝑖3=0 𝑖4=0 𝑖5=0
= 𝑠4

12
+ 𝑠3𝑡

2
+ 𝑠2𝑡2

2
+ 𝑜(𝑠4),

𝑠3 =
∑

𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 ∈𝑆𝑅⧵𝑆

𝑘3

=
𝑠
∑

𝑖2=0

𝑠−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
𝑖3 −

𝑠−1
∑

𝑖2=0

𝑠−1−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
𝑖3

= 𝑠4

12
+ 𝑠3𝑡

2
+ 𝑠2𝑡2

2
+ 𝑜(𝑠4),

𝑠4 =
∑

𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 ∈𝑆𝑅⧵𝑆

𝑘4

=
𝑠
∑

𝑖2=0

𝑠−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
𝑖4 −

𝑠−1
∑

𝑖2=0

𝑠−1−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
𝑖4

= 𝑠4

24
+ 𝑠3𝑡

3
+ 3𝑠2𝑡2

4
+ 𝑠𝑡3

2
+ 𝑜(𝑠4),

𝑠5 =
∑

𝑥𝑘22 𝑥𝑘33 𝑥𝑘44 𝑥𝑘55 ∈𝑆𝑅⧵𝑆

𝑘5

=
𝑠
∑

𝑖2=0

𝑠−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
𝑖5 −

𝑠−1
∑

𝑖2=0

𝑠−1−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
𝑖5

= 𝑠4

24
+ 𝑠3𝑡

3
+ 3𝑠2𝑡2

4
+ 𝑠𝑡3

2
+ 𝑜(𝑠4),

𝑔 = |𝑆| =
𝑠−1
∑

𝑖2=0

𝑠−1−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
1

= 𝑠4

24
+ 𝑠3𝑡

3
+ 𝑠2𝑡2

2
+ 𝑜(𝑠4),

𝑚 = |𝑆𝑅| =
𝑠
∑

𝑖2=0

𝑠−𝑖2
∑

𝑖3=0

𝑖2+𝑡
∑

𝑖4=0

𝑖3+𝑡
∑

𝑖5=0
1

= 𝑠4

24
+ 𝑠3𝑡

3
+ 𝑠2𝑡2

2
+ 𝑜(𝑠4).

y taking 𝑡 = 𝜏𝑠 for 𝜏 ≥ 0, we have

𝑔 = 1
24

(1 + 8𝜏 + 12𝜏2)𝑠4,

𝑠2 = 𝑠3 =
1
12

(1 + 6𝜏 + 6𝜏2)𝑠4,

𝑠4 = 𝑠5 =
1
24

(1 + 8𝜏 + 18𝜏2 + 12𝜏3)𝑠4.

Substituting 𝑋𝑖, 𝑠𝑖, 𝑋∞ and 𝑠𝑔 into 𝑋𝑠2
2 𝑋𝑠3

3 𝑋𝑠4
4 𝑋𝑠5

5 < 𝑋
𝑠𝑔
∞ and dealing

ith the exponents over 𝑁 , we obtain

(𝛼 + 2𝛿 − 2)(1 + 6𝜏 + 6𝜏2) + 1 + 8𝜏 + 18𝜏2 + 12𝜏3 < (𝛼 + 𝛿)(1 + 8𝜏 + 12𝜏2).

It leads to

𝛿 <
3 − 𝛼 + (16 − 4𝛼)𝜏 + 6𝜏2 − 12𝜏3

3 + 16𝜏 + 12𝜏2
.

For known 𝛼, there exists an optimal 𝜏0 maximizing the right side. By
calculating the derivative with respect to 𝜏, 𝜏0 is the unique positive
root satisfying

36𝑥4 + 96𝑥3 + (51 − 12𝛼)𝑥2 + (9 − 6𝛼)𝑥 − 𝛼 = 0.

ence, the above condition on 𝛿 reaches its maximal upper bound that
s

<
3 − 𝛼 + (16 − 4𝛼)𝜏0 + 6𝜏20 − 12𝜏30

3 + 16𝜏0 + 12𝜏20
.

We follow the four-step summary of the lattice-based method and
finally obtain three polynomials 𝑓1, 𝑓2, 𝑓3 apart from 𝑓𝑑 under the

above analysis and condition. The polynomials share the common root
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Table 1
The comparison of our results and previous ones on the insecure bound of 𝛿.

Common modulus 𝑁 Common private key 𝑑

Previous result [24, Theorem 1]a 𝛿 < 1
3
𝛽1 +

5
12

Previous result [26, Formula (4.3)]b 𝛿 < 1
3
− log𝑁 6

Ours (𝛽 = 𝛽1 + 𝛽2) 𝛿 < 8𝛽+17−
√

48𝛽+105
16

Ours (𝜏0 ≈ 0.229) 𝛿 < 0.411

aThe original bound is 1
12
𝛽∗ + 1

6
𝛿 − 5

48
< 0 for 𝑑1 , 𝑑2 < 𝑁𝛿 and |𝑑1 − 𝑑2| < 𝑁𝛽∗ . For clear comparison, we should replace 𝛽∗ with 𝛿 − 𝛽1 since |𝑑1 − 𝑑2| < 𝑁𝛿−𝛽1 in our interpretation

and hence we obtain 𝛿 < 1
3
𝛽1 +

5
12

.
bThe original bound is 𝛿 < 1

2
− 1

2(𝑟+1)
− log𝑁𝑟

6, where 𝑟 is the number of given RSA instances and 𝑁𝑟 is the 𝑟th RSA modulus. For clear comparison, we should replace 𝑟 with 2
since two RSA instances are considered in our attack and 𝑁 is used to denote 𝑁𝑟 as explained above. Hence, we obtain 𝛿 < 1

3
− log𝑁 6.
Fig. 2. The illustration of two correlated private keys with implicit information in the complex case.
(𝑘1, 𝑘2, 𝑝1 + 𝑞1, 𝑝2 + 𝑞2) over the integers. Finally, we extract 𝑝1 + 𝑞1 and
𝑝2 + 𝑞2, which result in the factorization of 𝑁1 and 𝑁2, respectively.

The running time is mainly dominated by the LLL algorithm, which
is polynomial in the maximal component of input vectors and lattice
dimension as stated in Lemma 1. The maximal component of input
vectors related to multiples of 𝑋𝑖 and 𝑋∞ is polynomial in 𝑁 and the
lattice dimension 𝑚 is polynomial in 𝑠4. Thus, the time complexity is
polynomial in 𝑁, 𝑠 and the factorization works in polynomial time. □

We compare our theoretical results with previous ones for full bit-
size public exponents, i.e., 𝛼1 = 𝛼2 = 1 and hence 𝛼 = 2. The comparison
is showed in Table 1. It is clear that our results of two special cases
are superior since we use more implicit information along with an
improved approach.

4. Extended implicit-key attack

We generalize the solving strategy for the basic case when analyzing
one block in the middle to the complex case when analyzing 𝑛 discrete
middle blocks. Suppose that the private keys 𝑑1 and 𝑑2 are of the
same bit-size 𝛿𝑙. Moreover, they share 𝛽1𝑙 MSBs, 𝛽𝑛+1𝑙 LSBs and other
middle blocks of 𝛽2𝑙,… , 𝛽𝑛𝑙 bits leaving 𝑛 different middle blocks of
𝛾1𝑙, 𝛾2𝑙,… , 𝛾𝑛𝑙 bits behind. The detailed illustration is showed in Fig. 2.
To be specific, we have
{

𝑑1 = 𝑑002(𝛿−𝛽1)𝑙 + 𝑑112(𝛿−(𝛽1+𝛾1))𝑙 +⋯ + 𝑑0𝑛,

𝑑2 = 𝑑002(𝛿−𝛽1)𝑙 + 𝑑212(𝛿−(𝛽1+𝛾1))𝑙 +⋯ + 𝑑0𝑛.
(19)

Moreover, we have 𝑑2 − 𝑑1 =
∑𝑛

𝑖=1(𝑑2𝑖 − 𝑑1𝑖)2𝜂𝑖𝑙, where 𝜂𝑖 = 𝛿 −
∑𝑖

𝑗=1(𝛽𝑗 + 𝛾𝑗 ) and 𝑑1𝑖, 𝑑2𝑖 denote the 𝑖th matching different bit blocks.
We substitute 𝑑2−𝑑1 into the RSA Eq. (8) involving two RSA instances.
Hence, our aim is to find the root (𝑑21 − 𝑑11,… , 𝑑2𝑛 − 𝑑1𝑛, 𝑘1, 𝑘2, 𝑝1 +
𝑞1, 𝑝2 + 𝑞2) of the integer polynomial

𝑓 (𝑥1, 𝑥2,… , 𝑥𝑛+4) =
𝑛+2
∑

𝑎𝑖𝑥𝑖 +
𝑛+4
∑

𝑎𝑖𝑥𝑖−2𝑥𝑖 + 𝑎𝑛+5. (20)
8

𝑖=1 𝑖=𝑛+3
Similar to the analysis in Section 3.1, we list all the unknown and
known variables below.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑎1 = 𝑒1𝑒22𝜂1𝑙 ,

⋮

𝑎𝑛 = 𝑒1𝑒22𝜂𝑛𝑙 ,

𝑎𝑛+1 = 𝑒2(𝑁1 + 1),

𝑎𝑛+2 = −𝑒1(𝑁2 + 1),

𝑎𝑛+3 = −𝑒2,

𝑎𝑛+4 = 𝑒1,

𝑎𝑛+5 = 𝑒2 − 𝑒1.

and

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑥1 = 𝑑21 − 𝑑11,

⋮

𝑥𝑛 = 𝑑2𝑛 − 𝑑1𝑛,

𝑥𝑛+1 = 𝑘1,

𝑥𝑛+2 = 𝑘2,

𝑥𝑛+3 = 𝑝1 + 𝑞1,

𝑥𝑛+4 = 𝑝2 + 𝑞2.

We primarily consider arbitrary public exponents 𝑒1 = 𝑁𝛼1 and 𝑒2 =
𝑁𝛼2 . The upper bounds 𝑋𝑖 and 𝑋∞ are fixed as follows.

𝑋1 = 𝑁𝛾1 , 𝑋2 = 𝑁𝛾2 , ⋯ , 𝑋𝑛 = 𝑁𝛾𝑛 ,

𝑋𝑛+1 = 𝑁𝛼1+𝛿−1, 𝑋𝑛+2 = 𝑁𝛼2+𝛿−1,

𝑋𝑛+3 = 𝑋𝑛+4 = 𝑁1∕2, 𝑋∞ = 𝑁𝛼+𝛿 , 𝛼 = 𝛼1 + 𝛼2.

(21)

We adapt the extended Jochemsz–May strategy and define the
following monomial sets

𝑆 =
⋃

0≤𝑗𝑛+3 ,𝑗𝑛+4≤𝑡

{

𝑥𝑖11 ⋯ 𝑥𝑖𝑛+3+𝑗𝑛+3𝑛+3 𝑥𝑖𝑛+4+𝑗𝑛+4𝑛+4 ∶ 𝑥𝑖11 ⋯ 𝑥𝑖𝑛+4𝑛+4 ∈ 𝑓 𝑠−1},

and

𝑆𝑅 =
⋃

0≤𝑗𝑛+3 ,𝑗𝑛+4≤𝑡

{

𝑥𝑖11 ⋯ 𝑥𝑖𝑛+3+𝑗𝑛+3𝑛+3 𝑥𝑖𝑛+4+𝑗𝑛+4𝑛+4 ∶ 𝑥𝑖11 ⋯ 𝑥𝑖𝑛+4𝑛+4 ∈ 𝑓 𝑠}.

The parameters 𝑠 and 𝑡 are two non-negative integers satisfying 𝑠 ≥ 1
and 𝑡 ≥ 0, which are used to control the number of elements in
the monomial sets 𝑆 and 𝑆𝑅 and also control the dimension of the
constructed lattice.
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⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

a

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

w

𝑠

𝑠

<

w

𝜆

−

f

𝑑

+

By generalizing the relation between a monomial and its indices, we
know that the monomial element 𝑥𝑖11 𝑥

𝑖2
2 ⋯ 𝑥𝑖𝑛+4𝑛+4 ∈ 𝑆 relates to

𝑖1 = 0,… , 𝑠 − 1,

𝑖2 = 0,… , 𝑠 − 1 − 𝑖1,

⋮

𝑖𝑛+1 = 0,… , 𝑠 − 1 − 𝑖1 −⋯ − 𝑖𝑛,

𝑖𝑛+2 = 0,… , 𝑠 − 1 − 𝑖1 −⋯ − 𝑖𝑛+1,

𝑖𝑛+3 = 0,… , 𝑖𝑛+1 + 𝑡,

𝑖𝑛+4 = 0,… , 𝑖𝑛+2 + 𝑡.

nd 𝑥𝑖11 𝑥
𝑖2
2 ⋯ 𝑥𝑖𝑛+4𝑛+4 ∈ 𝑆𝑅 relates to

𝑖1 = 0,… , 𝑠,

𝑖2 = 0,… , 𝑠 − 𝑖1,

⋮

𝑖𝑛+1 = 0,… , 𝑠 − 𝑖1 −⋯ − 𝑖𝑛,

𝑖𝑛+2 = 0,… , 𝑠 − 𝑖1 −⋯ − 𝑖𝑛+1,

𝑖𝑛+3 = 0,… , 𝑖𝑛+1 + 𝑡,

𝑖𝑛+4 = 0,… , 𝑖𝑛+2 + 𝑡.

The constructions of 𝑔𝑘1 ,𝑘2 ,…,𝑘𝑛+4 and 𝑔′𝑘1 ,𝑘2 ,…,𝑘𝑛+4
are straightforward

and similar to that in Section 3.1. We provide the condition for finding
(𝑛+3) many polynomials 𝑓1, 𝑓2,… , 𝑓𝑛+3 sharing the common root over
the integers. That is
𝑛+4
∏

𝑖=1
𝑋𝑠𝑖

𝑖 < 𝑋
𝑠𝑔
∞ , (22)

here 𝑠𝑖 =
∑

𝑥𝑘11 ⋯𝑥
𝑘𝑛+4
𝑛+4 ∈𝑆𝑅⧵𝑆

𝑘𝑖 and 𝑠𝑔 = |𝑆|.
Note that 𝑠1, 𝑠2,… , 𝑠𝑛 are equal based on the structure of the original

polynomial (20). Moreover, we also know 𝑠𝑛+1 = 𝑠𝑛+2 and 𝑠𝑛+3 =
𝑠𝑛+4. Similar to the index calculation used in Appendix of [25], we
conduct tedious computation of 𝑠1, 𝑠2,… , 𝑠𝑛+4 and 𝑠𝑔 , 𝑚 based on their
definitions as follows.

𝑠1 = 𝑠2 = ⋯ = 𝑠𝑛

=
∑

𝑥𝑘11 ⋯𝑥
𝑘𝑛+4
𝑛+4 ∈𝑆𝑅⧵𝑆

𝑘1

=
𝑠
∑

𝑖1=0

𝑠−𝑖1
∑

𝑖2=0
⋯

𝑠−𝑖1−⋯−𝑖𝑛
∑

𝑖𝑛+1=0

𝑠−𝑖1−⋯−𝑖𝑛+1
∑

𝑖𝑛+2=0

𝑖𝑛+1+𝑡
∑

𝑖𝑛+3=0

𝑖𝑛+2+𝑡
∑

𝑖𝑛+4=0
𝑖1

−
𝑠−1
∑

𝑖1=0

𝑠−1−𝑖1
∑

𝑖2=0
⋯

𝑠−1−𝑖1−⋯−𝑖𝑛
∑

𝑖𝑛+1=0

𝑠−1−𝑖1−⋯−𝑖𝑛+1
∑

𝑖𝑛+2=0

𝑖𝑛+1+𝑡
∑

𝑖𝑛+3=0

𝑖𝑛+2+𝑡
∑

𝑖𝑛+4=0
𝑖1

=
𝑠𝑛+4 + 2(𝑛 + 4)𝑠𝑛+3𝑡 + (𝑛 + 3)(𝑛 + 4)𝑠𝑛+2𝑡2

(𝑛 + 4)!
+ 𝑜(𝑠𝑛+4),

𝑠𝑛+1 = 𝑠𝑛+2

=
∑

𝑥𝑘11 ⋯𝑥
𝑘𝑛+4
𝑛+4 ∈𝑆𝑅⧵𝑆

𝑘𝑛+1

=
𝑠
∑

𝑖1=0

𝑠−𝑖1
∑

𝑖2=0
⋯

𝑠−𝑖1−⋯−𝑖𝑛
∑

𝑖𝑛+1=0

𝑠−𝑖1−⋯−𝑖𝑛+1
∑

𝑖𝑛+2=0

𝑖𝑛+1+𝑡
∑

𝑖𝑛+3=0

𝑖𝑛+2+𝑡
∑

𝑖𝑛+4=0
𝑖𝑛+1

−
𝑠−1
∑

𝑖1=0

𝑠−1−𝑖1
∑

𝑖2=0
⋯

𝑠−1−𝑖1−⋯−𝑖𝑛
∑

𝑖𝑛+1=0

𝑠−1−𝑖1−⋯−𝑖𝑛+1
∑

𝑖𝑛+2=0

𝑖𝑛+1+𝑡
∑

𝑖𝑛+3=0

𝑖𝑛+2+𝑡
∑

𝑖𝑛+4=0
𝑖𝑛+1

=
2𝑠𝑛+4 + 3(𝑛 + 4)𝑠𝑛+3𝑡 + (𝑛 + 3)(𝑛 + 4)𝑠𝑛+2𝑡2

(𝑛 + 4)!
+ 𝑜(𝑠𝑛+4),

𝑠 = 𝑠
9

𝑛+3 𝑛+4 +
=
∑

𝑥𝑘11 ⋯𝑥
𝑘𝑛+4
𝑛+4 ∈𝑆𝑅⧵𝑆

𝑘𝑛+3

=
𝑠
∑

𝑖1=0

𝑠−𝑖1
∑

𝑖2=0
⋯

𝑠−𝑖1−⋯−𝑖𝑛
∑

𝑖𝑛+1=0

𝑠−𝑖1−⋯−𝑖𝑛+1
∑

𝑖𝑛+2=0

𝑖𝑛+1+𝑡
∑

𝑖𝑛+3=0

𝑖𝑛+2+𝑡
∑

𝑖𝑛+4=0
𝑖𝑛+3

−
𝑠−1
∑

𝑖1=0

𝑠−1−𝑖1
∑

𝑖2=0
⋯

𝑠−1−𝑖1−⋯−𝑖𝑛
∑

𝑖𝑛+1=0

𝑠−1−𝑖1−⋯−𝑖𝑛+1
∑

𝑖𝑛+2=0

𝑖𝑛+1+𝑡
∑

𝑖𝑛+3=0

𝑖𝑛+2+𝑡
∑

𝑖𝑛+4=0
𝑖𝑛+3

=
2𝑠𝑛+4 + 4(𝑛 + 4)𝑠𝑛+3𝑡 + 3(𝑛 + 3)(𝑛 + 4)𝑠𝑛+2𝑡2

2(𝑛 + 4)!

+
(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)𝑠𝑛+1𝑡3

2(𝑛 + 4)!
+ 𝑜(𝑠𝑛+4),

𝑔 = |𝑆|

=
𝑠−1
∑

𝑖1=0

𝑠−1−𝑖1
∑

𝑖2=0
⋯

𝑠−1−𝑖1−⋯−𝑖𝑛
∑

𝑖𝑛+1=0

𝑠−1−𝑖1−⋯−𝑖𝑛+1
∑

𝑖𝑛+2=0

𝑖𝑛+1+𝑡
∑

𝑖𝑛+3=0

𝑖𝑛+2+𝑡
∑

𝑖𝑛+4=0
1

=
𝑠𝑛+4 + 2(𝑛 + 4)𝑠𝑛+3𝑡 + (𝑛 + 3)(𝑛 + 4)𝑠𝑛+2𝑡2

(𝑛 + 4)!
+ 𝑜(𝑠𝑛+4),

𝑚 = |𝑆𝑅|

=
𝑠
∑

𝑖1=0

𝑠−𝑖1
∑

𝑖2=0
⋯

𝑠−𝑖1−⋯−𝑖𝑛
∑

𝑖𝑛+1=0

𝑠−𝑖1−⋯−𝑖𝑛+1
∑

𝑖𝑛+2=0

𝑖𝑛+1+𝑡
∑

𝑖𝑛+3=0

𝑖𝑛+2+𝑡
∑

𝑖𝑛+4=0
1

=
𝑠𝑛+4 + 2(𝑛 + 4)𝑠𝑛+3𝑡 + (𝑛 + 3)(𝑛 + 4)𝑠𝑛+2𝑡2

(𝑛 + 4)!
+ 𝑜(𝑠𝑛+4).

By taking 𝑡 = 𝜏𝑠 for 𝜏 ≥ 0, we obtain

𝑠1 = 𝑠2 = ⋯ = 𝑠𝑛 = 𝑠𝑔

=
1 + 2(𝑛 + 4)𝜏 + (𝑛 + 3)(𝑛 + 4)𝜏2

(𝑛 + 4)!
𝑠𝑛+4, (23)

𝑛+1 = 𝑠𝑛+2 =
2 + 3(𝑛 + 4)𝜏 + (𝑛 + 3)(𝑛 + 4)𝜏2

(𝑛 + 4)!
𝑠𝑛+4, (24)

𝑠𝑛+3 = 𝑠𝑛+4 =
2 + 4(𝑛 + 4)𝜏 + 3(𝑛 + 3)(𝑛 + 4)𝜏2

2(𝑛 + 4)!
𝑠𝑛+4

+
(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)𝜏3

2(𝑛 + 4)!
𝑠𝑛+4. (25)

Substituting 𝑋1,… , 𝑋𝑛+4, 𝑋∞ and 𝑠1,… , 𝑠𝑛+4, 𝑠𝑔 into the condi-
tion (22) and dealing with the exponents over 𝑁 , we obtain

(𝛿 − 𝛽)(1 + 2(𝑛 + 4)𝜏 + (𝑛 + 3)(𝑛 + 4)𝜏2)

+(𝛼 + 2𝛿 − 2)(2 + 3(𝑛 + 4)𝜏 + (𝑛 + 3)(𝑛 + 4)𝜏2)

+1 + 2(𝑛 + 4)𝜏 + 3
2
(𝑛 + 3)(𝑛 + 4)𝜏2 + 1

2
(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)𝜏3

(𝛼 + 𝛿)(1 + 2(𝑛 + 4)𝜏 + (𝑛 + 3)(𝑛 + 4)𝜏2),

here 𝛼 = 𝛼1 + 𝛼2 and 𝛽 =
∑𝑛

𝑖=1 𝛽𝑖. By denoting

𝛼,𝛽,𝑛(𝜏) =
(𝛼 + 𝛽 − 1)(1 + 2(𝑛 + 4)𝜏 + (𝑛 + 3)(𝑛 + 4)𝜏2)

2(2 + 3(𝑛 + 4)𝜏 + (𝑛 + 3)(𝑛 + 4)𝜏2)
(𝑛 + 3)(𝑛 + 4)𝜏2 + (𝑛 + 2)(𝑛 + 3)(𝑛 + 4)𝜏3

4(2 + 3(𝑛 + 4)𝜏 + (𝑛 + 3)(𝑛 + 4)𝜏2)
− 𝛼

2
+ 1, (26)

it further reduces to 𝛿 < 𝜆𝛼,𝛽,𝑛(𝜏) for given 𝛼, 𝛽, 𝑛 and 𝜏 ≥ 0.

Definition 1. Let 𝑑(𝜏) be the derivative of 𝜆𝛼,𝛽,𝑛(𝜏) with respect to 𝜏
or known 𝛼, 𝛽, 𝑛. It is defined as

(𝜏) =
𝜕𝜆𝛼,𝛽,𝑛(𝜏)

𝜕𝜏
= (𝑛 + 2)(𝑛 + 3)2(𝑛 + 4)𝜏4 + 6(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)𝜏3

((11 − 2𝛼 − 2𝛽)(𝑛 + 3)(𝑛 + 4) − 12(𝑛 + 3))𝜏2

(8 − 4𝛼 − 4𝛽)(𝑛 + 3)𝜏 − 2(𝛼 + 𝛽 − 1).
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Table 2
The numerical examples with particular parameters of RSA instances.
𝑛 𝛼1 𝛼2 𝛼 𝛽1 𝛽2 𝛽3 𝛽4 𝛽 𝜏0 𝛿

1

0.75 1 1.75 0.05 0.05 – – 0.1 0.102 < 0.360
1 1 2 0.05 0.05 – – 0.1 0.131 < 0.311
1 1 2 0.1 0.15 – – 0.25 0.148 < 0.357
1 1 2 0.15 0.15 – – 0.3 0.153 < 0.373
1 1.25 2.25 0.15 0.15 – – 0.3 0.181 < 0.328

2

0.75 1 1.75 0.02 0.02 0.02 – 0.06 0.077 < 0.347
1 1 2 0.02 0.02 0.02 – 0.06 0.099 < 0.297
1 1 2 0.04 0.05 0.06 – 0.15 0.107 < 0.325
1 1 2 0.1 0.1 0.1 – 0.3 0.120 < 0.371
1 1.25 2.25 0.1 0.1 0.1 – 0.3 0.141 < 0.326

3

0.75 1 1.75 0.01 0.02 0.02 0.03 0.08 0.065 < 0.352
1 1 2 0.01 0.02 0.02 0.03 0.08 0.083 < 0.302
1 1 2 0.03 0.03 0.04 0.04 0.14 0.088 < 0.321
1 1 2 0.07 0.07 0.07 0.1 0.31 0.100 < 0.373
1 1.25 2.25 0.07 0.07 0.07 0.1 0.31 0.117 < 0.327
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In order to maximize 𝜆𝛼,𝛽,𝑛(𝜏), we denote by 𝜏0 the unique positive
root of 𝑑(𝜏) for given 𝛼, 𝛽, 𝑛, namely 𝑑(𝜏0) = 0 with real 𝜏0 > 0.
Hence, 𝜆𝛼,𝛽,𝑛(𝜏) reaches its maximum when taking 𝜏 = 𝜏0, which can
be calculated using numerical methods.

Similarly, we follow the four-step summary of the lattice-based
method and finally obtain sufficient polynomials apart from the integer
polynomial (20) under the above analysis and condition. All these
polynomials share the common root (𝑑21 − 𝑑11,… , 𝑑2𝑛 − 𝑑1𝑛, 𝑘1, 𝑘2, 𝑝1 +
𝑞1, 𝑝2 + 𝑞2) over the integers. Thus, we extract 𝑝1 + 𝑞1 and 𝑝2 + 𝑞2, which
lead to the factorization of 𝑁1 and 𝑁2, respectively.

The running time is mainly dominated by the LLL algorithm, which
is polynomial in the maximal component of input vectors and lattice
dimension as stated in Lemma 1. The maximal component of input
vectors related to multiples of 𝑋𝑖 and 𝑋∞ is polynomial in 𝑁 and the
lattice dimension 𝑚 is polynomial in 𝑠𝑛+4. Thus, the time complexity is
polynomial in 𝑁(= 2𝑙) and 𝑠𝑛. The factorization works in time that is
polynomial in 2𝑙 but exponential in 𝑛. The attack result is stated below.

Proposition 5. Let 𝑁1 = 𝑝1𝑞1 and 𝑁2 = 𝑝2𝑞2 be two distinct RSA moduli
of the same bit-size 𝑙, where primes 𝑝1, 𝑞1, 𝑝2, 𝑞2 are of the same bit-size 𝑙∕2.
et 𝑒1, 𝑒2, 𝑑1, 𝑑2 satisfy 𝑒1𝑑1 ≡ 1 mod 𝜑(𝑁1) and 𝑒2𝑑2 ≡ 1 mod 𝜑(𝑁2), such
hat 𝑒1, 𝑒2 and 𝑑1, 𝑑2 are of bit-size 𝛼1𝑙, 𝛼2𝑙 and 𝛿𝑙, respectively. Suppose
hat 𝑑1 and 𝑑2 share 𝛽1𝑙 MSBs, 𝛽𝑛+1𝑙 LSBs and other middle blocks of
2𝑙,… , 𝛽𝑛𝑙 bits, leaving 𝑛 many middle blocks of 𝛾1𝑙,… , 𝛾𝑛𝑙 bits behind.
Then 𝑁1 and 𝑁2 can be factored if

𝛿 < 𝜆𝛼,𝛽,𝑛(𝜏), (27)

where 𝛼 = 𝛼1+𝛼2, 𝛽 =
∑𝑛

𝑖=1 𝛽𝑖 and 𝜏 ≥ 0. Let 𝜏0 be the unique positive root
of 𝑑(𝜏). Hence, the above condition on 𝛿 reaches its maximal upper bound
that is

𝛿 < 𝜆𝛼,𝛽,𝑛(𝜏0).

The running time is polynomial in 2𝑙 but exponential in 𝑛.

Revisiting the basic case of 𝑛 = 1, we immediately have the
following bound

𝛿 <
(𝛼 + 𝛽 − 1)(1 + 10𝜏 + 20𝜏2)

2(2 + 15𝜏 + 20𝜏2)
− 20𝜏2 + 60𝜏3

4(2 + 15𝜏 + 20𝜏2)
− 𝛼

2
+ 1.

his bound is identical to that presented in (6), which means our
xtended implicit-key attack is a natural generalization of the basic one.

Although we analyze the situation when 𝑛 discrete blocks in the
middle of 𝑑1, 𝑑2 are different, this attack may be inefficient in practice
since the lattice dimension becomes much larger and the time consump-
tion increase higher as 𝑛 gets greater. We provide several numerical
examples with particular parameters of RSA instances in Table 2 for
intuitive display and understanding.

The implicit-key attacks might be used by hackers or cybercriminals
who have obtained partial access to the RSA backdoor key generation
10

f

through means such as data manipulation or social engineering. To be
specific, two RSA backdoor private keys 𝑑1 and 𝑑2 are generated with
several predetermined implicit relations under the control of hackers or
cybercriminals. They can use the implicit information known about 𝑑1
and 𝑑2, i.e., given assumptions about the amounts of shared MSBs, LSBs
or middle bits to factor the private keys and gain complete access to the
encrypted communication. This could potentially compromise sensitive
information, such as financial transactions or personal information, and
cause significant harm to the individuals or groups involved.

5. Validation experiments

Before providing the experimental results, we give a simplified strat-
egy for implementing the proposed implicit-key attacks. The asymptotic
bounds stated in Proposition 2 are reached by 𝜏 = 𝑡∕𝑠 < 0.2 according
o our numerical calculation. The value of 𝑠 should be fixed at least 6
or 𝑡 = 1. The resulting lattice dimension 𝑚 = 966 seems inefficient to
erform our simulated experiments. Therefore, our simplified strategy
s based on taking 𝑡 = 0 for implementation, which makes the lattice
onstruction easier whereas the corresponding upper bound on 𝛿 is
ower. In the following simulated experiments, we mainly choose 𝑡 = 0
i.e. 𝜏 = 0) for efficient validation. The simulated numerical experi-
ents are meant to demonstrate the practical feasibility and efficiency

f the proposed attacks under the corresponding viable conditions.
We give experimental findings to demonstrate the effectiveness of

he aforementioned attacks according to Proposition 2, Proposition 3,
roposition 4 and Proposition 5, respectively. The experiments were
onducted under Windows 10 running on a computer with Intel Core
5-10500 CPU 3.10 GHz and 8 GB RAM. We utilized the LLL algorithm
nd the Gröbner basis computation available in SageMath [36]. The
umbers used in each experiment were uniformly and randomly pro-
uced. We searched for the best experimental results, i.e., the highest 𝛿
alues so that we could conduct a successful attack on generated RSA
nstances.

We were able to gather significantly more polynomials that met our
olvable requirements during the experiments. In other words, we got
ore sufficiently short vectors than we wanted after executing the LLL

lgorithm. Therefore, using the Gröbner basis computation, we could
ind the common root and then factor the given RSA moduli. We would
ike to point out that although the practical performance of the LLL
lgorithm is better than expected, the theoretical asymptotic bounds
f 𝛿 are slightly higher than the experimental ones. We show a toy
umerical example to provide a clear understanding of our proposed
ttacks and the attack performance.

xample 1. In order to check the correctness and validity of gener-
lized implicit-key attacks on RSA, i.e., Proposition 5, we choose the
ollowing specific parameters and generate the test example.
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1. Randomly generate two 128-bit prime numbers 𝑝1, 𝑞1 and the
modulus 𝑁1 = 𝑝1𝑞1 (that implies 𝑙 = 256);

2. Randomly generate two 128-bit prime numbers 𝑝2, 𝑞2 and the
modulus 𝑁2 = 𝑝2𝑞2 (that implies 𝑙 = 256);

3. Randomly generate two 75-bit private keys 𝑑1 and 𝑑2 sharing
10-bit MSBs, 15-bit LSBs and one middle block of 25 bits, leaving
two middle blocks of 12 and 13 bits behind;

4. Compute the public keys 𝑒1 and 𝑒2 based on above parameters.

The values of the numerical example are as follows.

𝑁1 = 7707446030876135702188775813519855146317∖
7926486674652585577153046769417463957,

𝑁2 = 6820857231756617967050874992435155095741∖
3217051127796887822196933203004728293,

𝑒1 = 6588164357981076278760647954202272658145∖
3538164718606821351701327168166148501,

𝑒2 = 4644295477039716119467296971316754493630∖
0109718417539401882425858344035554889.

To apply generalized implicit-key attack proposed in Proposition 5,
we choose 𝑠 = 3, 𝑡 = 0, which means that we need to apply the LLL
algorithm to a lattice  with dimension 𝑚 = 84. After running for
about 8 seconds, the approximately shortest basis vectors that meet
the solvable condition are obtained. The system of integer equations
to be solved is then derived by transforming reduced vectors into
integer polynomials. We finally solve it by applying the Gröbner basis
computation in less than one second and recover the unknown variables
as follows.

𝑥1 = 1220,

𝑥2 = 360,

𝑥3 = 23451873454186264133673,

𝑥4 = 18688670276834104797536,

𝑥5 = 564604791267787730189712331604172673802,

𝑥6 = 523037669003405350904074688719600239994.

Thus, we know the values of 𝑝1 + 𝑞1 and 𝑝2 + 𝑞2 through 𝑥5 and 𝑥6.

𝑝1 + 𝑞1 = 564604791267787730189712331604172673802,

𝑝2 + 𝑞2 = 523037669003405350904074688719600239994.

Eventually, we extract 𝑝1, 𝑞1, 𝑝2 and 𝑞2 based on 𝑝1+𝑞1, 𝑝2+𝑞2, 𝑁1 and
𝑁2.

𝑝1 = 231114679608716682316576127775596020963,

𝑞1 = 333490111659071047873136203828576652839,

𝑝2 = 247971566084683177310935343410715903843,

𝑞2 = 275066102918722173593139345308884336151.

One may check that 𝑁1 = 𝑝1𝑞1 and 𝑁2 = 𝑝2𝑞2 do hold, so the
generalized implicit-key attack proposed in Proposition 5 successfully
outputs the factorization of 𝑁1 and 𝑁2.

5.1. Experimental results for Proposition 2

For our basic implicit-key attack, we generated two 𝑙-bit (i.e., 𝑙 =
1024, 2048, 3072) RSA moduli and two public exponents (denoted by
𝛼1, 𝛼2 and 𝛼 = 𝛼1 + 𝛼2) appeared in the experiments were nearly of
full bit-size. The implicit information of shared MSBs and LSBs were
indicated by 𝛽1, 𝛽2 and 𝛽 = 𝛽1 + 𝛽2. Because the lattice construction
was fixed by 𝑠 = 3, 𝑡 = 0, we needed to reduce a 56-dimension lattice.
Table 3 displays the comparison of experimental insecure bounds. The
theoretical upper bound on 𝛿 for specific parameters in our simplified
strategy is provided by the 𝛿 -column. The experimental upper bound
11
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on 𝛿 for specific parameters in our computer experiments is provided by
the 𝛿𝑒-column. The AR-column indicates the achieving rate calculated
as 𝛿𝑒∕𝛿𝑡, which compares our experimental bound with the theoretical
one. We use 𝑚 to represent the matching lattice dimension, and Time
to denote the running time (measured in seconds).

We gathered enough polynomials with a common root over the
integers for each experiment. More polynomials were added to the
Gröbner basis computation since the first four might be insufficient
for extracting the common root. Finally, we were able to determine
the correct values for 𝑝1 + 𝑞1 and 𝑝2 + 𝑞2, which factorized 𝑁1 and
𝑁2, respectively. We established the value of 𝑥3 before determining the
solution to the other variables if the Gröbner basis computation did not
immediately produce the desired root. According to Table 3, 𝑚 = 56 is
sufficient since the experimental bound is so close to the theoretical
one, which is based on the observation that the average achieving rate
is 98.8%.

5.2. Experimental results for Proposition 3

For our particular implicit-key attack against RSA with shared
modulus 𝑁 and 𝑑1, 𝑑2 having some common MSBs and LSBs, we gen-
erated an 𝑙-bit (i.e., 𝑙 = 1024, 2048, 3072) RSA modulus and two
public exponents (denoted by 𝛼1, 𝛼2 and 𝛼 = 𝛼1 + 𝛼2) appeared in the
experiments were nearly of full bit-size. The implicit information of
shared MSBs and LSBs were indicated by 𝛽1, 𝛽2 and 𝛽 = 𝛽1+𝛽2. Because
the lattice construction was fixed by 𝑠 = 2, 3, 4 and 𝑡 = 0, we needed
to reduce lattices whose dimensions are 20, 50 and 105, respectively.
Table 4 displays the comparison of experimental insecure bounds. The
theoretical upper bound on 𝛿 for specific parameters in our simplified
strategy is provided by the 𝛿𝑡-column. The experimental upper bound
on 𝛿 for specific parameters in our computer experiments is provided by
the 𝛿𝑒-column. The AR-column indicates the achieving rate calculated
as 𝛿𝑒∕𝛿𝑡, which compares our experimental bound with the theoretical
one. We use 𝑚 to represent the matching lattice dimension, and Time
to denote the running time (measured in seconds).

We gathered enough polynomials with a common root over the
integers for each experiment. More polynomials were added to the
Gröbner basis computation since the first three might be insufficient for
extracting the common root. Finally, we were able to obtain the correct
values for 𝑝1+𝑞1 and 𝑝2+𝑞2, which factorized 𝑁1 and 𝑁2, respectively.

In Table 4, the achieving rate estimates the attack performance in
our lattice settings with different dimensions. The respective average
achieving rates for 𝑚 = 20, 50, 105 are 76.5%, 82.8%, 86.3%, which
implies that a lattice with higher dimension indeed leads to better
attack performance. Thus, we see that the experimental bound is a
few bits away from the theoretical one since the lattice dimension is
limited. The lattice dimension is a crucial factor in our attacks and it
has a significant impact on the attack performance since we assume a
large lattice dimension in the theoretical analysis.

5.3. Experimental results for Proposition 4

For our special implicit-key attack on RSA with the common pri-
vate key 𝑑 and 𝑁1, 𝑁2 of the same bit-size 𝑙, we generated two 𝑙-bit
(i.e., 𝑙 = 1024, 2048, 3072) RSA moduli and two public exponents
(denoted by 𝛼1, 𝛼2 and 𝛼 = 𝛼1 + 𝛼2) appeared in the experiments were
nearly of full bit-size. We omitted 𝛽1 and 𝛽2 as there is no implicit
information about private keys. Moreover, we applied various lattice
constructions indicated by 𝑠 and 𝑡 = 𝜏𝑠. Table 5 displays the comparison
of the insecure bounds. The theoretical upper bound on 𝛿 for specific
parameters in our simplified strategy is provided by the 𝛿𝑡-column. The
experimental upper bound on 𝛿 for specific parameters in our computer
experiments is provided by the 𝛿𝑒-column. The AR-column indicates the
achieving rate calculated as 𝛿𝑒∕𝛿𝑡, which compares our experimental

bound with the theoretical one. We use 𝑚 to represent the matching
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Table 3
The comparison of theoretical and experimental results on 𝛿 for Proposition 2.
𝑙 𝛼1 𝛼2 𝛼 𝛽1 𝛽2 𝛽 𝛿𝑡 𝛿𝑒 AR 𝑚 Time

1024 0.998 0.999 1.997 0.010 0.010 0.020 0.255 0.252 98.8% 56 53.463 s
1024 1.000 0.998 1.998 0.040 0.040 0.080 0.270 0.267 98.8% 56 54.895 s
1024 0.999 0.998 1.997 0.060 0.100 0.160 0.290 0.287 98.9% 56 56.475 s
1024 0.997 0.999 1.996 0.100 0.140 0.240 0.310 0.308 99.3% 56 47.419 s
1024 0.999 0.999 1.998 0.156 0.151 0.307 0.327 0.325 99.3% 56 37.093 s

2048 0.999 0.999 1.998 0.012 0.015 0.027 0.257 0.253 98.4% 56 218.083 s
2048 1.000 0.999 1.999 0.061 0.100 0.161 0.290 0.286 98.6% 56 248.810 s
2048 0.999 0.999 1.998 0.156 0.151 0.307 0.327 0.324 99.0% 56 169.537 s

3072 1.000 1.000 2.000 0.012 0.015 0.027 0.257 0.253 98.4% 56 520.627 s
3072 1.000 1.000 2.000 0.100 0.141 0.241 0.310 0.305 98.3% 56 586.772 s
3072 0.999 1.000 1.999 0.149 0.150 0.299 0.325 0.322 99.0% 56 509.864 s
Table 4
The comparison of theoretical and experimental results on 𝛿 for Proposition 3.
𝑙 𝛼1 𝛼2 𝛼 𝛽1 𝛽2 𝛽 𝛿𝑡 𝛿𝑒 AR 𝑚 Time

1024 0.998 0.999 1.997 0.015 0.012 0.027 0.425 0.363 85.4% 50 21.412 s
1024 0.998 1.000 1.998 0.049 0.068 0.117 0.456 0.382 83.7% 50 21.319 s
1024 0.997 0.999 1.996 0.088 0.088 0.176 0.475 0.393 82.7% 50 20.843 s
1024 0.998 0.999 1.997 0.098 0.117 0.215 0.488 0.399 81.7% 50 21.684 s
1024 1.000 1.000 2.000 0.146 0.176 0.322 0.524 0.422 80.5% 50 23.654 s

2048 1.000 1.000 2.000 0.044 0.051 0.095 0.448 0.387 86.3% 105 3578.821 s
2048 0.999 0.999 1.998 0.098 0.117 0.215 0.488 0.425 87.0% 105 3787.419 s
2048 1.000 0.999 1.999 0.146 0.176 0.322 0.524 0.449 85.6% 105 4016.093 s

3072 0.999 0.998 1.997 0.044 0.051 0.095 0.448 0.358 79.9% 20 4.360 s
3072 1.000 0.999 1.999 0.098 0.117 0.215 0.488 0.371 76.0% 20 4.662 s
3072 0.998 0.999 1.997 0.146 0.176 0.322 0.524 0.386 73.6% 20 4.859 s
Table 5
The comparison of theoretical and experimental results on 𝛿 for Proposition 4.
𝑙 𝛼1 𝛼2 𝛼 𝛿𝑡 𝛿𝑒 AR 𝑠 𝑡 𝜏 𝑚 Time

1024 0.999 0.999 1.998 0.334 0.330 98.8% 2 0 0 15 0.429 s
1024 0.999 0.997 1.996 0.335 0.331 98.8% 3 0 0 35 8.073 s
1024 0.998 0.997 1.995 0.358 0.333 93.0% 2 1 0.500 41 9.567 s
1024 0.996 0.996 1.992 0.336 0.332 98.8% 4 0 0 70 157.614 s
1024 1.000 0.998 1.998 0.403 0.354 87.8% 3 1 0.333 85 276.154 s

2048 1.000 0.998 1.998 0.329 0.324 98.4% 3 0 0 35 30.004 s
2048 1.000 1.000 2.000 0.357 0.334 93.5% 2 1 0.500 41 35.810 s
2048 1.000 1.000 2.000 0.402 0.356 88.5% 3 1 0.333 85 745.443 s

3072 1.000 1.000 2.000 0.333 0.331 99.3% 2 0 0 15 2.614 s
3072 1.000 0.999 1.999 0.357 0.333 93.2% 2 1 0.500 41 65.679 s
3072 1.000 0.999 1.999 0.402 0.356 88.5% 3 1 0.333 85 1644.579 s
lattice dimension, which is determined by 𝑠, 𝑡 and 𝜏. We use Time to
denote the running time (measured in seconds).

We gathered enough polynomials with a common root over the
integers for each experiment. More polynomials were added to the
Gröbner basis computation since the first three might be insufficient
for extracting the common root. Finally, we were able to obtain the
correct values of 𝑝 + 𝑞, which directly led to factorization of 𝑁 . From
Table 5, we observe that the experimental results get higher when the
lattice dimension increases. Additionally, the average achieving rate is
98.8% for 𝑡 = 0 but it is 90.7% for 𝑡 = 1. This phenomenon implies
that we need greater 𝑠 for non-zero 𝑡 in order to achieve better attack
performance.

5.4. Experimental results for Proposition 5

For our extended implicit-key attack when given 𝑛 = 2 different bit
blocks in the middle of the private keys, we generated two 𝑙-bit (i.e., 𝑙 =
1024, 2048, 3072) RSA moduli and two public exponents (denoted by
𝛼1, 𝛼2 and 𝛼 = 𝛼1 + 𝛼2) appeared in the experiments were nearly of full
bit-size. The implicit information of respective shared MSBs, middle bits
and LSBs were indicated by 𝛽1, 𝛽2, 𝛽3 and 𝛽 = 𝛽1 + 𝛽2 + 𝛽3. Because
the lattice construction was fixed by 𝑠 = 3, 𝑡 = 0, we needed to
12

reduce an 84-dimension lattice. Table 6 displays the comparison of
experimental insecure bounds. The theoretical upper bound on 𝛿 for
specific parameters in our simplified strategy is provided by the 𝛿𝑡-
column. The experimental one for specific parameters in our computer
experiments is provided by the 𝛿𝑒-column. The AR-column indicates the
achieving rate calculated as 𝛿𝑒∕𝛿𝑡, which compares our experimental
bound with the theoretical one. We use 𝑚 to represent the matching
lattice dimension, and Time to denote the running time (measured in
seconds).

We gathered enough polynomials with a common root over the
integers for each experiment. More polynomials were added to the
Gröbner basis computation since the first three might be insufficient for
extracting the common root. Finally, we were able to obtain the correct
values for 𝑝1+𝑞1 and 𝑝2+𝑞2, which factorized 𝑁1 and 𝑁2, respectively.
We established the value of 𝑥3 before determining the solution to the
other variables if the Gröbner basis computation did not immediately
produce the desired root. According to Table 6, 𝑚 = 84 is sufficient
since the experimental bound is so close to the theoretical one, which
is based on the observation that the average achieving rate is 98.3%.

6. Conclusion

In this study, we review a novel RSA attack scenario with implicitly

correlated private keys and make further extensions. Our goal is to
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Table 6
The comparison of theoretical and experimental results on 𝛿 for Proposition 5.
𝑙 𝛼1 𝛼2 𝛼 𝛽1 𝛽2 𝛽3 𝛽 𝛿𝑡 𝛿𝑒 AR 𝑚 Time

1024 1.000 0.997 1.997 0.010 0.010 0.020 0.040 0.260 0.256 98.4% 84 473.531 s
1024 0.999 0.999 1.998 0.049 0.049 0.049 0.147 0.287 0.283 98.6% 84 352.497 s
1024 0.999 0.999 1.998 0.039 0.059 0.098 0.196 0.299 0.293 97.9% 84 337.486 s
1024 1.000 0.999 1.999 0.078 0.098 0.078 0.254 0.314 0.311 99.0% 84 248.021 s
1024 0.999 1.000 1.999 0.127 0.107 0.059 0.293 0.323 0.320 99.0% 84 186.509 s

2048 1.000 0.998 1.998 0.039 0.098 0.059 0.196 0.299 0.293 97.9% 84 1653.496 s
2048 0.999 0.999 1.998 0.078 0.098 0.078 0.254 0.314 0.310 98.7% 84 1417.193 s
2048 0.999 1.000 1.999 0.127 0.107 0.059 0.293 0.323 0.319 98.7% 84 1037.386 s

3072 0.999 0.998 1.997 0.039 0.098 0.059 0.196 0.299 0.291 97.3% 84 3179.607 s
3072 0.999 0.999 1.998 0.078 0.098 0.078 0.254 0.314 0.308 98.0% 84 2756.840 s
3072 1.000 0.999 1.999 0.127 0.107 0.059 0.293 0.323 0.317 98.1% 84 2147.563 s
factor given RSA moduli using implicit knowledge of the private keys
that is already known. Such implicit knowledge specifically alludes
to the known numbers of unknown common bits distributed among
unknown correlated keys. With the help of the lattice-based method,
which is adapted for solving integer polynomial equations, we present
basic and extended implicit-key attacks.

The validity of our proposed attacks is verified and we reveal the
vulnerability of RSA using implicitly correlated keys. Moreover, our
work covers two special cases of a common modulus or a common
private key. The corresponding results are stronger than previous ones.
The experiments confirm the correctness and efficiency of the proposed
attacks. We are able to launch a successful implicit-key attack and
factor given RSA moduli in a matter of seconds.
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