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Introduction Background

RSA and Multi-prime RSA

The RSA cryptosystem:

N = pq with two distinct prime factors of the same bit-size.

(e, d) satisfy ed ≡ 1 mod ϕ(N), where ϕ(N) = (p− 1)(q − 1).

Encryption: C = M e mod N .

Decryption: M = Cd mod N .

The multi-prime RSA cryptosystem:

The modulus is modified as the product of r(≥ 3) primes.

N = p1p2 · · · pr with r distinct prime factors of the same bit-size.

(e, d) satisfy ed ≡ 1 mod ϕ(N), where ϕ(N) =
∏r
i=1(pi − 1).
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Introduction Background

Prime Difference

Let ∆ = |p− q| be the prime difference of the original RSA scheme.

Though ∆ is close to N
1
2 , there still exist enhanced attacks.

It is used to enhance small private exponent attack on RSA.[DW02]

Let ∆ = maxi,j∈{1,2,...,r} |pi − pj | for the multi-prime RSA scheme.

It is denoted by Nγ for 0 < γ < 1/r.

The maximal value of difference between every two prime factors.

It also enhances several attacks on multi-prime RSA.
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Introduction Main Problem

Main Problem: Factoring with Small Prime Difference

Factoring attack can remove the restriction on the private exponents.

N can be factored under what condition when we are given

a multi-prime RSA modulus N ,

the number of prime factors r,

the small prime difference Nγ .

The multi-prime modulus can be factored in polynomial time if γ < 1
r2

.

Let p = [N
1
r ] and xi = pi − p.

Solve the univariate equation xi + p = 0 mod pi for |xi| < Nγ .[ZT13]
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Introduction Main Problem

Formulation of Main Problem

Find all solutions of the following simultaneous equations.


y1 + p = 0 mod p1,

y2 + p = 0 mod p2,

...

yr + p = 0 mod pr.

Given N , r and γ.

Let p = [N
1
r ] and yi = pi − p.

|yi| < Nγ for 1 ≤ i ≤ r.

The factoring problem is similar to multi-prime Φ-hiding problem.[KOS10]
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Introduction Lattice Based Method

Lattice Based Method

Recover small roots of modular equations using lattice reduction algorithm.

Construct a set of shift polynomials sharing the common roots,

Transform polynomials’ coefficients into a lattice basis matrix,

Compute short lattice vectors by the LLL algorithm,

Transform lattice vectors into equations over the integers,

Solve the desired roots by Gröbner basis computations.
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Introduction Lattice Based Method

Tool Used in Our Methods

All solutions of the linear equation can be found.[HM08]

n∑
i=1

ηi < 1− (n+ 1)(1− β) + n(1− β)
n+1
n

a1x1 + · · ·+ anxn + an+1 = 0 mod p.

a1, . . . , an and an+1 are some integers.

p (≥ Nβ) is a divisor of N .

N is a known large composite integer (of unknown factorization).

Solutions (x
(0)
1 , . . . , x

(0)
n ) satisfy |x(0)i | ≤ Nηi .

The time complexity is polynomial in logN and exponential in n.
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Methods Ideas and Results

Our Ideas

Solve an r-variate equation instead of the univariate equation.

Using r equations is better than using only one equation.

Combining all equations together provides an r-variate equation.

However, the time complexity is exponential in r.

Solve an l-variate equation by the optimal linearization technique.

Using k (2 ≤ k ≤ r − 1) equations will provide better bound.

Recover the modulus rather than the unknown variables.

Apply the optimal linearization technique [TK12] for l variables.

The consumption is lower and time complexity is polynomial in r.
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Methods Ideas and Results

Our Results

The multi-prime modulus can be factored in polynomial time if

for r ≤ 6,

γ <
2

r(r + 1)

for r ≥ 7 with an optimal l,

γ <
2

l + 1

(
1

r

) l+1
l

for much larger r,

γ <
2

er(log r + 1)
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Methods Ideas and Results

Notations Used in Our Methods

p = [N
1
r ] denotes the value of rounding N

1
r to the nearest integer.

Elementary symmetric polynomial in k variables y1, . . . , yk of degree i.

σki =
∑
|λ|=i

λ⊂{1,...,k}

∏
j∈λ

yj



Qk denotes the product of k distinct prime factors chosen from p1, . . . , pr.

Q′k denotes the numerical value of the left side of the modular equation.

Mengce Zheng Improved Factoring Attacks on Multi-prime RSA with Small Prime Difference 11 / 25



Methods Ideas and Results

Notations Used in Our Methods

p = [N
1
r ] denotes the value of rounding N

1
r to the nearest integer.

Elementary symmetric polynomial in k variables y1, . . . , yk of degree i.

σki =
∑
|λ|=i

λ⊂{1,...,k}

∏
j∈λ

yj



Qk denotes the product of k distinct prime factors chosen from p1, . . . , pr.

Q′k denotes the numerical value of the left side of the modular equation.

Mengce Zheng Improved Factoring Attacks on Multi-prime RSA with Small Prime Difference 11 / 25



Methods The Direct Method

The Direct Method (1)

Let e be the inverse of p modulo N , that is ep = 1 mod N .

yi + p = 0 mod pi → eyi + 1 = 0 mod pi

Collect the modular equations as many as possible.


ey1 + 1 = 0 mod p1,

...

eyr + 1 = 0 mod pr.
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Methods The Direct Method

The Direct Method (2)

Combine all equations together by multiplication.

r∏
i=1

(eyi + 1) = 0 mod N →
r∑
i=1

eiσri + 1 = 0 mod N

→
r∑
i=1

eiσri + ep = 0 mod N

→
r∑
i=1

ei−1σri + p = 0 mod N

→ er−1σrr + · · ·+ eσr2 + σr1 + p = 0 mod N
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Methods The Direct Method

The Direct Method (3)

∑n
i=1 ηi < 1 for n = r and ηi = iγ.

r∑
i=1

iγ < 1 → γ <
2

r(r + 1)

After solving er−1σrr + · · ·+ eσr2 + σr1 + p = 0 mod N , we obtain

σr1, . . . , σ
r
r ,

x1, . . . , xr by solving xr − σr1xr−1 + · · ·+ (−1)rσrr = 0,

p1, . . . , pr by computing pi = xi + p.

The direct method works in time polynomial in logN but exponential in r.
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Methods The Optimized Method

The Optimized Method (1)

Take fewer equations such as k (2 ≤ k ≤ r − 1) equations.

The equation is
∏k
i=1(yi + p) = 0 mod Qk.

It is not necessary to know the values of y1, . . . , yk.

It is enough to know the numerical value of
∏k
i=1(yi + p), Q′k.

Computing gcd (Q′k, N) provides all products of k prime factors Qk.

Apply the optimal linearization technique for l (2 ≤ l ≤ k) variables.

The advantage is lower consumption with fewer variables.
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Methods The Optimized Method

The Optimized Method (2)

Expand the product of k equations.

k∏
i=1

(yi + p) = 0 mod Qk →
k∑
i=0

piσkk−i = 0 mod Qk

→ σkk + pσkk−1 + · · ·+ pk = 0 mod Qk

Search for the optimal linearization when it can be efficiently solved.
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Methods The Optimized Method

The Optimized Method (3)

Perform a linearization for the case of l (2 ≤ l ≤ k) variables.

pk−t1u1 + pk−t2u2 + · · ·+ pk−tlul + pk = 0 mod Qk

Let t1, . . . , tl+1 be integers satisfying t1 = k > t2 > · · · > tl+1 = 0.

ui =
∑ti

j=ti+1+1 p
ti−jσkj for 1 ≤ i ≤ l.

Apply theorem with β = k/r and ηi = (ti − ti+1 − 1)/r+ (ti+1 + 1)γ.

Obtain the condition with
∑l

i=2 ti, k and l that are optimized later.

γ <
l

l +
∑l

i=2 ti

(
k + 1

r
+ (1− k

r
)
l+1
l − 1

)
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Methods The Optimized Method

The Optimized Method (4)

Optimize
∑l

i=2 ti for (t1, t2, t3, . . . , tl) = (k, l − 1, l − 2 . . . , 1).

γ <
2

l + 1

(
k + 1

r
+ (1− k

r
)
l+1
l − 1

)

The condition is further optimized by taking k = r − 1.

γ <
2

l + 1

(
1

r

) l+1
l
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Methods The Optimized Method

The Optimized Method (5)

The optimal value of l for each positive integer r (≤ 10).

l = 2 for r = 3, 4, 5,

l = 3 for r = 6, 7, 8, 9, 10.

Solve the following linear equation with an optimal l.

u1 + pr−lu2 + · · ·+ pr−2ul + pr−1 = 0 mod Qr−1

For much larger r and l ≈ log r, the condition is approximated

γ <
2

er(log r + 1)
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Methods The Optimized Method

The Optimized Method (6)

After solving u1 + pr−lu2 + · · ·+ pr−2ul + pr−1 = 0 mod Qr−1, we obtain

u1, . . . , ul,

Q′r−1 = u1 + pr−lu2 + · · ·+ pr−2ul + pr−1,

Qr−1 by computing gcd (Q′r−1, N),

p1, . . . , pr by computing N/Qr−1.

The optimized method works in time polynomial in logN and r.
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Methods The Optimized Method

Further Improvement

Applying better lattice constructions [TK13] since ui are unbalanced.

u1 + pr−2u2 + pr−1 = 0 mod Qr−1

r DM OM FI ZT

3 0.1666 0.1283 — 0.1111
4 0.1000 0.0833 0.0835 0.0625
5 0.0666 0.0596 0.0608 0.0400
6 0.0476 0.0458 0.0474 0.0277
7 0.0357 0.0373 0.0387 0.0204
8 0.0277 0.0312 0.0327 0.0156
9 0.0222 0.0267 0.0282 0.0123

10 0.0181 0.0232 0.0248 0.0100
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Methods Experimental Results

Experimental Results

The experiments for r = 3 with a 1536-bit multi-prime RSA modulus.

The direct method performs better with similar lattice dimension.

The optimized method runs much faster as predicted.

The experiments for 4 ≤ r ≤ 7 with around 300-dimensional lattices.

Use the optimized method since it is more efficient.

Our results are superior to the previous experimental bounds.

r 4 5 6 7

OM 0.0750 0.0533 0.0337 0.0286
ZT 0.0620 0.0396 0.0275 0.0202
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Conclusions

Conclusions

We propose improved factoring attacks on multi-prime RSA.

Factoring attack works better with much smaller prime difference.

Factoring attack removes the restriction on the private exponents.

We use lattice based method to solve the factoring problem.

Apply the optimal linearization technique to reduce the consumption.

Obtain further improvement by better lattice constructions.

Verify two methods by the experiments.
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