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1.1.1 BACKGROUND
AJPS Cryptosystem

• It was introduced by Aggarwal et al. at Crypto 2018
• A somewhat ring and noise scheme using elements of Zp

• Use Mersenne prime p = 2n − 1 where n is a prime number

Interesting Features

• It is conjectured to resist against potential quantum attacks
• The advantage is simplicity in representation and computation
• Connection between integers modulo p and binary strings of length n
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1.1.2 BACKGROUND
Key Information

• Integers in Zp are mapped onto a set of n-bit strings
• Key generation involves random selection of f and g from Zp

• They relate to sparse binary strings with Hamming weight w ≈
√
n

• Another key h is defined as f/g (mod p) ensuring g has an inverse
• It will relate to an n-bit string having an arbitrary Hamming weight

f, g ∈ {0, 1, 2, . . . , p− 1} ⇌ · · · 0 · · ·
w ones︷ ︸︸ ︷

1 · · · 1 · · · 1 · · · 1 · · · 0 · · ·︸ ︷︷ ︸
n-bit strings
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1.1.3 TWO SCHEMES (1)

Single Bit Version

Two integers f and g each has a Hamming weight of w with a constraint
n > 4w2. The key pair (pk, sk) is (h = f/g (mod p), g).

Encryption

Choose a and b with a Hamming
weight of w and encrypt one bit
m through

c = (−1)m · (a · h+ b)

Decryption

Compute d = Ham(c · g) and out-
put ‘0’ if d ≤ 2w2 or ‘1’ otherwise.
The core judgment is

c · g = (−1)m · (a · f + b · g)
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1.1.4 TWO SCHEMES (2)

Multiple Bits Version

Using above f, g and a random integer r modulo p leads to pk := (r, t) =
(r, f · r + g) and sk := f . Besides, error correcting code (E ,D) is required.

Encryption

Choose a, b1, b2 with a Hamming
weight of w and encrypt multi-
bit m to (c1, c2) =

(a · r + b1, (a · t+ b2)⊕ E(m))

Decryption

OutputD((f ·c1)⊕c2) as f ·c1 and
a · t + b2 exhibit a low Hamming
distance through

f ·c1 = (a ·t+b2)−a ·g−b2+b1 ·f
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1.1.5 HARD PROBLEMS
Mersenne Low Hamming Ratio Search Problem (MLHRSP)

Consider an n-bit Mersenne prime p = 2n−1 and a positive integer w. Let f
and g be two n-bit random strings characterized by a Hamming weight of w.
The goal is to extract the values of f and g from the information provided
by the equation h = f/g (mod p) with a given h.

Mersenne Low Hamming Combination Search Problem (MLHCSP)

Consider an n-bit Mersenne prime p = 2n − 1, a positive integer w, and a
uniformly random n-bit string r. Let f and g be two n-bit random strings
with a Hamming weight of w. The goal is to extract the values of f and g
given (r, t) = (r, f · r + g (mod p)).
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1.2.1 PREVIOUS ATTACKS
Beunardeau et al.’s Attack

When f, g <
√
p, h = f/g (mod p) can be exploited to find them using a

2-dimensional lattice generated by basis matrix(
1 h
0 p

)
.

Under Gaussian heuristic, recover a short vector (g, f)with 2−2w probability.

More...
• A 3-dimensional lattice applies to the recovery of one bit m
• Similarly extending to attack on MLHCSP with r, t = f · r + g (mod p)
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1.2.2 PREVIOUS ATTACKS

Coron-Gini’s Attack

It is a modified version of Beunardeau et al.’s attack on multi-bit AJPS and
breaks the indistinguishability of ciphertexts (i.e., m = 0 and m ̸= 0).

More...
• One has E(m) = 0 for m = 0 and c1 = a · r + b1, c2 = a · t+ b2

• Recovery of a, b1, b2 < p2/3 through lattice reduction algorithm
• Success probability is (2/3)3w ≈ 2−1.75w outperforming original one
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1.2.3 OUR CONTRIBUTION
Improved Lattice-Based Attack on MLHRSP

Let p = 2n−1 be an n-bit Mersenne prime and w be a positive integer. Let f
and g bounded by f ≤ pξ1 and g ≤ pξ2 , denote two unknown n-bit random
strings with a Hamming weight of w. Given h satisfying h = f/g (mod p),
then f and g can be efficiently recovered if ξ1 + ξ2 < 1 (i.e., f · g < p).

Improved Features

• Address unbalanced scenarios when f <
√
p < g or g <

√
p < f

• Recognize unexplored advantage of lattice reduction algorithm
• Increase attack success probability from 2−2w to √

πw3/2/2× 2−2w

Mengce Zheng Improved Lattice-Based Attack on MLHRSP Introduction Research Problem Page 9 / 21



2.1.1 LATTICE-BASED SOLVING STRATEGY
Lattice Concepts

The set of all integer linear combinations of linearly independent vectors.
• Dimension: dim(Λ) = ω

• Basis vectors: b⃗1, . . . , b⃗ω
• Basis matrix: B = (bij)ω×ω

• Determinant: det(Λ) = | det(B)|

Λ = Z⃗b1 + · · ·+ Z⃗bω =

{
ω∑

i=1

zi⃗bi : zi ∈ Z, b⃗i ∈ Rω

}
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2.1.2 LATTICE-BASED SOLVING STRATEGY
Lattice Reduction

• Lenstra, Lenstra, and Lovász proposed the famous LLL algorithm
• Output approximately shortest reduced vectors in polynomial time
• Lattice-based solving strategy is applied in public key cryptanalysis

Random Basis (1, 3), (2, 4) Reduced Basis (1, 1), (−1, 1)

LLL Algorithm
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2.1.3 LATTICE-BASED SOLVING STRATEGY
How to Find Small Modular Roots Using Lattice Reduction

1. Construct shift polynomials sharing common root modulo R

2. Transform their coefficient vectors into a lattice basis matrix B
3. Calculate short reduced vectors from ω-dimensional lattice Λ(B)

4. Transform output reduced vectors into integer equations system
5. Extract desired root over the integers using some simple methods

Asymptotic Solving Condition

det(Λ) < Rω =⇒ | det(B)| < Rω
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2.1.4 TARGET MODULAR EQUATION
Bivariate Equation

Derive a bivariate polynomial f(x1, x2) := x1 − hx2 from h = f/g (mod p)
and thus a bivariate modular equation:

f(x1, x2) ≡ 0 (mod p),

with the root (x⋆1, x⋆2) = (f, g). The upper bounds of desired root (x⋆1, x⋆2) are
X1 = pξ1 and X2 = pξ2 respectively.

Given parameters are as follows:

h, p, ξ1, ξ2
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2.2.1 IMPROVED STRATEGY (1)

Shift Polynomials

Shift polynomials defined for a positive s and a non-negative i are

gi(x1, x2) := xs−i
2 f i(x1, x2)p

s−i, 0 ≤ i ≤ s.

Therefore R indicated in the lattice-based solving strategy is ps.

Coefficient Vectors

Transforming coefficient vectors of gi(X1x1, X2x2) into row vectors ofB and
the leading monomial of gi(x1, x2) is xi1xs−i

2 ps−i.
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2.2.2 IMPROVED STRATEGY (2)

Constructed Lattice

Regarding derived coefficient vectors as b⃗i for i = 1, . . . , ω and generate

Λ =

{
ω∑

i=1

zi⃗bi : zi ∈ Z

}
.

The lattice dimension ω is calculated as

ω =

s∑
i=0

1 = s+ 1.
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2.2.3 IMPROVED STRATEGY (3)

Toy Example 
x22 x1x2 x21

g0 p2X2
2 0 0

g1 −hpX2
2 pX1X2 0

g2 h2X2
2 −2hX1X2 X2

1



Lattice Reduction

Matrix diagonals are Xi
1X

s−i
2 ps−i for 0 ≤ i ≤ s and det(Λ) = pspXs1

1 Xs2
2 for

sp = s2 =
∑s

i=0(s− i) = s(s+ 1)/2 and s1 =
∑s

i=0 i = s(s+ 1)/2.
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2.2.4 IMPROVED STRATEGY (4)

Attack Bound

The solving condition det(Λ) < Rω with R = ps yields

(pX1X2)
s(s+1)

2 < ps·(s+1).

Simplify the exponents over p and obtain

1

2
· (1 + ξ1 + ξ2) < 1,

It further leads to

ξ1 + ξ2 < 1, (f · g < p.)
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2.3.1 SUCCESS PROBABILITY

Previous Success Probability

Given f, g are both less than √
p, namely their w many ‘1’ bits are chosen

from low ⌊n/2⌋ bits, the expression for Pr1 is calculated as

Pr1 =
(⌊n/2⌋

w

)(⌊n/2⌋
w

)(
n
w

)(
n
w

)
=

(
⌊n/2⌋!(n− w)!

n!(⌊n/2⌋ − w)!

)2

≈ 2−2w.
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2.3.2 SUCCESS PROBABILITY

Our Success Probability

The w many ‘1’ bits are chosen in a wider range and our Pr2 is calculated as

Pr2 =
n−w∑
t=w

(
t
w

)(
n−t
w

)(
n
w

)(
n
w

) =

(
n+1
2w+1

)(
n
w

)(
n
w

)
=

(
n+1
2w+1

)(⌊n/2⌋
w

)(⌊n/2⌋
w

) · Pr1

≈
√
π

2
w

3
2 · 2−2w =

√
πw3/22−2w−1.
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2.4. EXPERIMENTAL RESULTS
Experiment Details

• Performed on a laptop computer running Ubuntu 22.04
• Conducted using SageMath mathematics software system
• Chose random parameters for generating experimental instances
• Provided source code at https://github.com/MengceZheng/MLHRSP

Time Comparison

• n = 521, w = 10: our improved attack succeeded in ≈ 0.2 s
• n = 4253, w = 30: our improved attack succeeded in ≈ 48 s
• n = 11213, w = 50: our improved attack succeeded in ≈ 2900 s
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3. CONCLUSION
Improvements

• Expand vulnerable private key range and find more weak keys
• Increase success probability by considering unbalanced attack cases

Limitation
• Discard and resample f, g again if both of them fall within attack range

Future Work
• Explore how to incorporate a similar random partition technique
• Extend such improved lattice-based attack on MLHRSP to MLHCSP
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