IMPROVED LATTICE-BASED ATTACK ON MERSENNE LOW HAMMING RATIO SEARCH PROBLEM

Mengce Zheng, Wei Yan

Zhejiang Wanli University; National University of Defense Technology

🗆 Sydney, Australia

July 16, 2024

OUTLINE

1. Introduction

1.1 Background

1.2 Research Problem

2. Improved Attack

2.1 Lattice

- 2.2 Attack Strategy
- 2.3 Success Probability
- 2.4 Validating Experiments

3. Conclusion

AJPS Cryptosystem

- It was introduced by Aggarwal et al. at Crypto 2018
- A somewhat ring and noise scheme using elements of \mathbb{Z}_p
- Use Mersenne prime $p = 2^n 1$ where n is a prime number

Interesting Features

- It is conjectured to resist against potential quantum attacks
- The advantage is simplicity in representation and computation
- Connection between integers modulo p and binary strings of length n

Key Information

- Integers in \mathbb{Z}_p are mapped onto a set of n-bit strings
- Key generation involves random selection of f and g from \mathbb{Z}_p
- They relate to sparse binary strings with Hamming weight $w\approx \sqrt{n}$
- Another key h is defined as $f/g \pmod{p}$ ensuring g has an inverse
- It will relate to an n-bit string having an arbitrary Hamming weight

$$f, \ g \in \{0, \ 1, \ 2, \ \dots, \ p-1\} \quad \rightleftharpoons \quad \underbrace{\cdots 0 \cdots \overbrace{1 \cdots 1 \cdots 1 \cdots 1}^{w \text{ ones}} \cdots 0 \cdots \overbrace{n \text{-bit strings}}^{w \text{ ones}}$$

1.1.3 TWO SCHEMES

Single Bit Version

Two integers f and g each has a Hamming weight of w with a constraint $n > 4w^2$. The key pair (pk, sk) is $(h = f/g \pmod{p}, g)$.

Encryption

Choose a and b with a Hamming weight of w and encrypt one bit m through

 $c = (-1)^m \cdot (a \cdot h + b)$

Decryption

Compute $d = \text{Ham}(c \cdot g)$ and output '0' if $d \leq 2w^2$ or '1' otherwise. The core judgment is

$$c \cdot g = (-1)^m \cdot (a \cdot f + b \cdot g)$$

1.1.⁴ **TWO SCHEMES**

Multiple Bits Version

Using above f, g and a random integer r modulo p leads to $pk := (r, t) = (r, f \cdot r + g)$ and sk := f. Besides, error correcting code $(\mathcal{E}, \mathcal{D})$ is required.

Encryption

Choose a, b_1, b_2 with a Hamming weight of w and encrypt multibit m to $(c_1, c_2) =$

 $(a \cdot r + b_1, (a \cdot t + b_2) \oplus \mathcal{E}(m))$

Decryption

Output $\mathcal{D}((f \cdot c_1) \oplus c_2)$ as $f \cdot c_1$ and $a \cdot t + b_2$ exhibit a low Hamming distance through

$$f \cdot c_1 = (a \cdot t + b_2) - a \cdot g - b_2 + b_1 \cdot f$$

Mersenne Low Hamming Ratio Search Problem (MLHRSP)

Consider an *n*-bit Mersenne prime $p = 2^n - 1$ and a positive integer w. Let f and g be two *n*-bit random strings characterized by a Hamming weight of w. The goal is to extract the values of f and g from the information provided by the equation $h = f/g \pmod{p}$ with a given h.

Mersenne Low Hamming Combination Search Problem (MLHCSP)

Consider an *n*-bit Mersenne prime $p = 2^n - 1$, a positive integer w, and a uniformly random *n*-bit string r. Let f and g be two *n*-bit random strings with a Hamming weight of w. The goal is to extract the values of f and g given $(r, t) = (r, f \cdot r + g \pmod{p})$.

1.2.1 PREVIOUS ATTACKS

Beunardeau et al.'s Attack

When $f, g < \sqrt{p}$, $h = f/g \pmod{p}$ can be exploited to find them using a 2-dimensional lattice generated by basis matrix

$$\begin{pmatrix} 1 & h \\ 0 & p \end{pmatrix}$$
 .

Under Gaussian heuristic, recover a short vector (g, f) with 2^{-2w} probability.

More...

- A 3-dimensional lattice applies to the recovery of one bit ${\boldsymbol{m}}$
- Similarly extending to attack on MLHCSP with $r, t = f \cdot r + g \pmod{p}$

1.2.2 PREVIOUS ATTACKS

Coron-Gini's Attack

It is a modified version of Beunardeau *et al.*'s attack on multi-bit AJPS and breaks the indistinguishability of ciphertexts (i.e., m = 0 and $m \neq 0$).

More...

- One has $\mathcal{E}(m) = 0$ for m = 0 and $c_1 = a \cdot r + b_1$, $c_2 = a \cdot t + b_2$
- Recovery of $a, b_1, b_2 < p^{2/3}$ through lattice reduction algorithm
- Success probability is $(2/3)^{3w} \approx 2^{-1.75w}$ outperforming original one

1.2.³ **OUR CONTRIBUTION**

Improved Lattice-Based Attack on MLHRSP

Let $p = 2^n - 1$ be an *n*-bit Mersenne prime and w be a positive integer. Let f and g bounded by $f \le p^{\xi_1}$ and $g \le p^{\xi_2}$, denote two unknown *n*-bit random strings with a Hamming weight of w. Given h satisfying $h = f/g \pmod{p}$, then f and g can be efficiently recovered if $\xi_1 + \xi_2 < 1$ (i.e., $f \cdot g < p$).

Improved Features

- Address unbalanced scenarios when $f < \sqrt{p} < g$ or $g < \sqrt{p} < f$
- Recognize unexplored advantage of lattice reduction algorithm
- Increase attack success probability from 2^{-2w} to $\sqrt{\pi}w^{3/2}/2 \times 2^{-2w}$

2.1.1 LATTICE-BASED SOLVING STRATEGY

Lattice Concepts

The set of all integer linear combinations of linearly independent vectors.

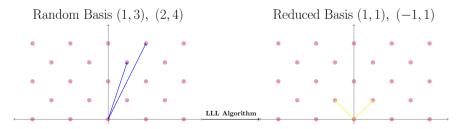
- Dimension: $\dim(\Lambda) = \omega$
- Basis vectors: $\vec{b}_1, \ldots, \vec{b}_{\omega}$
- Basis matrix: $B = (b_{ij})_{\omega \times \omega}$
- Determinant: $det(\Lambda) = |det(B)|$

$$\Lambda = \mathbb{Z}\vec{b}_1 + \dots + \mathbb{Z}\vec{b}_\omega = \left\{\sum_{i=1}^{\omega} z_i\vec{b}_i : z_i \in \mathbb{Z}, \vec{b}_i \in \mathbb{R}^{\omega}\right\}$$

2.1.2 LATTICE-BASED SOLVING STRATEGY

Lattice Reduction

- Lenstra, Lenstra, and Lovász proposed the famous LLL algorithm
- Output approximately shortest reduced vectors in polynomial time
- Lattice-based solving strategy is applied in public key cryptanalysis



2.1.3 LATTICE-BASED SOLVING STRATEGY

How to Find Small Modular Roots Using Lattice Reduction

- 1. Construct shift polynomials sharing common root modulo ${\it R}$
- 2. Transform their coefficient vectors into a lattice basis matrix \boldsymbol{B}
- 3. Calculate short reduced vectors from ω -dimensional lattice $\Lambda(B)$
- 4. Transform output reduced vectors into integer equations system
- 5. Extract desired root over the integers using some simple methods

Asymptotic Solving Condition

$$\det(\Lambda) < R^{\omega} \quad \Longrightarrow \quad |\det(B)| < R^{\omega}$$

2.1.4 TARGET MODULAR EQUATION

Bivariate Equation

Derive a bivariate polynomial $f(x_1, x_2) := x_1 - hx_2$ from $h = f/g \pmod{p}$ and thus a bivariate modular equation:

 $f(x_1, x_2) \equiv 0 \pmod{p},$

with the root $(x_1^{\star}, x_2^{\star}) = (f, g)$. The upper bounds of desired root $(x_1^{\star}, x_2^{\star})$ are $X_1 = p^{\xi_1}$ and $X_2 = p^{\xi_2}$ respectively.

Given parameters are as follows:

$$h, p, \xi_1, \xi_2$$

2.2.1 IMPROVED STRATEGY

Shift Polynomials

Shift polynomials defined for a positive s and a non-negative i are

$$g_i(x_1, x_2) := x_2^{s-i} f^i(x_1, x_2) p^{s-i}, \quad 0 \le i \le s.$$

Therefore R indicated in the lattice-based solving strategy is p^s .

(1)

2.2.1 IMPROVED STRATEGY

Shift Polynomials

Shift polynomials defined for a positive s and a non-negative i are

$$g_i(x_1, x_2) := x_2^{s-i} f^i(x_1, x_2) p^{s-i}, \quad 0 \le i \le s.$$

Therefore R indicated in the lattice-based solving strategy is p^s .

Coefficient Vectors

Transforming coefficient vectors of $g_i(X_1x_1, X_2x_2)$ into row vectors of B and the leading monomial of $g_i(x_1, x_2)$ is $x_1^i x_2^{s-i} p^{s-i}$.

2.2.2 IMPROVED STRATEGY

Constructed Lattice

Regarding derived coefficient vectors as $ec{b}_i$ for $i=1,\ldots,\omega$ and generate

$$\Lambda = \left\{ \sum_{i=1}^{\omega} z_i \vec{b}_i : z_i \in \mathbb{Z} \right\}.$$

The lattice dimension $\boldsymbol{\omega}$ is calculated as

$$\omega = \sum_{i=0}^{s} 1 = s + 1.$$

(2)

2.2.3 IMPROVED STRATEGY

Toy Example

$$\begin{pmatrix} & x_2^2 & x_1x_2 & x_1^2 \\ \hline g_0 & p^2 X_2^2 & 0 & 0 \\ g_1 & -hp X_2^2 & p X_1 X_2 & 0 \\ g_2 & h^2 X_2^2 & -2h X_1 X_2 & X_1^2 \end{pmatrix}$$

Mengce Zheng

(3)

2.2.3 IMPROVED STRATEGY

Toy Example

Lattice Reduction

Matrix diagonals are
$$X_1^i X_2^{s-i} p^{s-i}$$
 for $0 \le i \le s$ and $\det(\Lambda) = p^{s_p} X_1^{s_1} X_2^{s_2}$ for $s_p = s_2 = \sum_{i=0}^s (s-i) = s(s+1)/2$ and $s_1 = \sum_{i=0}^s i = s(s+1)/2$.

Mengce Zheng

(3)

2.2.4 IMPROVED STRATEGY

Attack Bound

The solving condition $\det(\Lambda) < R^{\omega}$ with $R = p^s$ yields

$$(pX_1X_2)^{\frac{s(s+1)}{2}} < p^{s \cdot (s+1)}.$$

Simplify the exponents over p and obtain

$$\frac{1}{2} \cdot (1 + \xi_1 + \xi_2) < 1,$$

It further leads to

$$\xi_1 + \xi_2 < 1, \quad (f \cdot g < p.)$$

(4)

2.3.1 SUCCESS PROBABILITY

Previous Success Probability

Given f, g are both less than \sqrt{p} , namely their w many '1' bits are chosen from low $\lfloor n/2 \rfloor$ bits, the expression for \Pr_1 is calculated as

$$\Pr_{1} = \frac{\binom{\lfloor n/2 \rfloor}{w} \binom{\lfloor n/2 \rfloor}{w}}{\binom{n}{w} \binom{n}{w}} = \left(\frac{\lfloor n/2 \rfloor! (n-w)!}{n! (\lfloor n/2 \rfloor - w)!}\right)^{2} \approx 2^{-2w}.$$

2.3.2 **SUCCESS PROBABILITY**

Our Success Probability

The w many '1' bits are chosen in a wider range and our Pr_2 is calculated as

$$\begin{aligned} \mathsf{Pr}_{2} &= \sum_{t=w}^{n-w} \frac{\binom{t}{w}\binom{n-t}{w}}{\binom{n}{w}\binom{n}{w}} = \frac{\binom{n+1}{2w+1}}{\binom{n}{w}\binom{n}{w}} \\ &= \frac{\binom{n+1}{2w+1}}{\binom{\lfloor n/2 \rfloor}{w}\binom{\lfloor n/2 \rfloor}{w}} \cdot \mathsf{Pr}_{1} \\ &\approx \frac{\sqrt{\pi}}{2} w^{\frac{3}{2}} \cdot 2^{-2w} = \sqrt{\pi} w^{3/2} 2^{-2w-1} \end{aligned}$$

Mengce Zheng

2.4. EXPERIMENTAL RESULTS

Experiment Details

- Performed on a laptop computer running Ubuntu 22.04
- Conducted using SageMath mathematics software system
- Chose random parameters for generating experimental instances
- Provided source code at https://github.com/MengceZheng/MLHRSP

Time Comparison

- n = 521, w = 10: our improved attack succeeded in $\approx 0.2 \, \mathrm{s}$
- n = 4253, w = 30: our improved attack succeeded in $\approx 48 \text{ s}$
- n = 11213, w = 50: our improved attack succeeded in $\approx 2900 \,\mathrm{s}$

Improvements

- Expand vulnerable private key range and find more weak keys
- Increase success probability by considering unbalanced attack cases

Limitation

• Discard and resample f, g again if both of them fall within attack range

Future Work

- Explore how to incorporate a similar random partition technique
- Extend such improved lattice-based attack on MLHRSP to MLHCSP

Sydney, Australia, July 16, 2024

mengce.zheng@gmail.com