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Cryptanalysis of RSA with Private Key
Less ThanV!-292

Dan Boneh and Glenn Durfee

Abstract—We show that if the private exponentd used in the key is an integer! satisfyinge - d = 1mod (¢(N)/2) where
RSA (Rivest-Shamir-Adleman) public-key cryptosystem is less (N) = N — p— ¢+ 1. Note that botle andd are typically less

than IN°-2°2 then the system is insecure. This is the first improve- thana(IV). It follows that there exists an integgrsuch that
ment over an old result of Wiener showing that whend is less than '

IN°:25 the RSA system is insecure. We hope our approach can be N+1 p+gq

used to eventually improve the bound tad less thanN°-5. ed+ k <T — T) =1. (2)
Index Terms—Cryptanalysis, lattice basis reduction, LLL, low-

exponent RSA, RSA. Writing s = —2t2 and A = 2, we know

[. INTRODUCTION MA+s)=1 (mode).
O speed up RSA (Rivest-Shamir—Adleman system) sig- Throughout the paper we write = N* for somec. Typi-
nature generation one is tempted to use a small private 6y, e is of the same order of magnitude&ge.qg.,c > N/10)

ponentd. Unfortunately, Wiener [14] showed over ten years agdd, thereforeq is very close tal. As we shall see, when is

that if one usesl < N°-25 then the RSA system can be brokenmuch smaller thai our results become even stronger.

Since then there have been no improvements to this bound. VerSuppose the private exponehsatisfiesd < N°. Wiener's

heul and Tilborg [13] showed that as longds. N3 itis pos- results show that wheh< 0.25 the value ofi can be efficiently

sible to exposéd in less time than an exhaustive search; howevd@und givenc and.V. Our goal is to show that the same holds
their algorithm requires exponential time as soor as N0-25,  for larger values of. By (1) we know that

In this paper we give the first substantial improvement to 2de ey
Wiener’s result. We show that as long és< N%-292 one can |k| < ol < 3de/N < 3e't7e .
efficiently break the system. In particular, whérc N°-292 an H)
attacker can recover the private RSA key given the public kegimilarly, since botip andg are less thagv/N we know that
We hope our approach will eventually lead to what we believe
is the correct bound, namety < N°3. Our results are based |s| < 2N0? = 2¢1/(22)
on the seminal work of Coppersmith [3].

Wiener describes a number of clever techniques for avoiding T0 Summarize, taking ~ 1 (which is the common case) and
his attack while still providing fast RSA signature generatiognoring small constants, we end up with the following problem:
One such suggestion is to use a large valuec.ofndeed, find integersk ands satisfying
Wiener’s attack provides no information as sooreas N'-.
In contrast, our approach is effective as longeas N!-37,
Consequently, larger values efmust be used to defeat th
attack. We discuss this variant in Section VI.

k(A+s)=1 (mode), where|s| < ¢*® and|k| < ¢°.
(2)

eThe problem can be viewed as follows: given an intedgfind

an element “close” tol whose inverse modulkeis “small.” We

refer to this as themall inverse problenClearly, if for a given

value of§ < 0.5 one can efficiently list all the solutions to the

Recall that an RSA public key is a pair of integér$,c) small inverse problem, then RSA with private exponent smaller

whereN = pgis the product of twa-bit primes. For simplicity, thanV?¢ is insecure (simply observe that givemoduloe one
we assumeed (p — 1, — 1) = 2. The corresponding private can factorV immediately, since > s). Currently we can solve
the small inverse problem whenevexk 1 — %\/5 ~ 0.292.
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The next section gives a brief introduction to lattices d&/er Fact 3.3: Let L be a lattice spanned Hy, - - -, u,,) and let
A first pass at a solution to the small inverse problem whejy, - - -, b,,) be the result of applying LLL to the given basis.
« is close tol is given in Section IV. In Section V, we im- Supposeumm > 1. Then
prove this approach and prove the main result of the paper. Sec-

tion VI provides a solution for arbitrarg. In Section VII, we b2l < 272 det (L)=—T
d|scéus|_s%:/ ariant ofougfn:;aick Whr']Ch wqus ttmf?]zillance:l;SA Proof: It is well known thatu? ;. is a lower bound on the
MOoaull. “hese are Modull =pg WNerep IS MUCh1arger than. - onq4, of the shortest vector i. Consequentlyljb || > u ..
Finally, Section VIl describes experimental results with the e aly,
: ‘e obtain
tack algorithm.
det(L Hllb*ll > [[B1]] - |3 |t Com /2
[ll. PRELIMINARIES
H H H 2 IlllIl ||b*||w 12 (w 1) /2'
Let uy,---,u, € Z" be linearly independent vectors with

w < n. Alattice L spanned byfu, - - -, u,,) is the set of allin- Hence
teger linear combinations af , - - - , u,,. We say that the lattice .
is full-rank if w = n. We state a few basic results about lattices |3z < 27 [ det (L)} R (L)=1
and lattice basis reduction and refer to [9] for an introduction. Unin

Lattice basis reductions are frequently used in the cryptanalygjgich leads to
of public key systems [6].

Let L be a lattice spanned bf,- - -,u,,). We denote by oo < ||05)* + 1||b1||2
uj, - - -, uy, the vectors obtained by applying the Gram-Schmidt w1 - N
process to the vectors, - - -, u,,. We define the determinant of < 2971 det(L) T + 2“2 det (L)
the latticeL as < 2¢det (L )%

- Note thatdet (L) > 1 sincew’,, > 1. The bound now
det (L) == [ Iluf| follows. O

Similar bounds can be derived for oth¢'s. For our purposes
where|| - || denotes the Euclidean norm on vectorsLlis a the bound orb, is sufficient.

full-rank lattice then the determinant df is equal to the de-
terminant of thew x w matrix whose rows are the basis vectors IV. SOLVING THE SMALL INVERSE PROBLEM

Lot B In this section we focus on the case wheis of the same

Fact 3.1 (LLL): Let L be a lattice spanned Ky:1, - - -, u,,). order of magnitude a¥, i.e., ife = N* then« is close tal. To
The LLL (Lenstra—Lenstra—Lovasz) algorithm, giversimplify the exposition, in this section we simply take= 1.

(wt, v U, runs in polynomial time and produces dn the next section we give the general solution for arbitrary
new basisby, - - -, b,,) of L satisfying Whena = 1 the small inverse problem is the following: given
1) |21 < 2||bz+1 |2, forall 1 < i < w. a polynomialf(z,y) = (A + y) — 1, find (z0, yo) satisfying

2) Foralli, if b; = b* + z u;b% then|p;| < (1/2)forallj.  f(wo,50) =0 (mode),  where|zo| < ¢ and|yo| < ™
=
We note that an LLL-reduced basis satisfies some stron
properties, but those are not relevant to our discussion.

e show that the problem can be solved wheneéver 1 —
2\/_ ~ 0. 292 We begin by giving an algorithm that works

whené < = — % 7 & 0.284. Our solution is based on a pow-

Fact 3.2: Let L be a lattice andy, ---,b,, be an LLL-re- erful technlque due to Coppersmith [3], as presented by How-

duced basis oL. Then grave-Graham [5]. We note that for this particular polynomial
our results beat the generic bound given by Coppersmith. For
I1ba]] < 272 det (L) simplicity, letX = ¢® andY = ¢%5.
- Given a polynomial
Proof: Sinceb; = b* the bound immediately follows from h(z,y) = Z a; o'y’
det(L H 65| > o[22, O we define

|A(x Z a7 ;).
In the spirit of a recent result due to Jutla [7] we provide a

bound on the norm of other vectors in an LLL reduced basighg main tool we use is stated in the following fact. The fact
For a basigu,, - --,u.) of a latticeL, define shows that if a polynomiak(z,y) has low norm then every
small root of(x,y) modulo a big modulus is also a root of
wh o= ming ||ul|. h(z,y) over the integers.

min
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3. 3.2 2 3,4

1]z oy | o® oy 2% | 2 2Py %P 3P|y ay
e | e
zeS eSx
fe2 | - - e’xy
zZed e3x2
zfe? - - ex?v
fe| - - - - - ex?y?
Z363 x5
zzf52 - - e2x3y
zf2e - - - - - ex3y?
,f3 _ _ _ _ _ _ _ - —  x3y3
yes 537
yfe? - - e?xy?
yfle _ . - - - ex?y3
yf3 - - - - - bl - xv*

z%y® 23y

Fig. 1. The matrix spanned by , andh; , fork =0,---,3,72 = 0,---,3 — k, andy = 0,1. The “-” symbols denote nonzero entries whose value we do
not care about.

Fact 4.1 (HG98): Let i(z,y) € Z[z,y] be a polynomial examplein Fig. 1¢ = 1, so only linear shifts of; are given. As
which is a sum of at most monomials. Suppose that we shall see, thg-shifts are the main reason for our improved
results.

We now turn to calculating the determinant of the lattice\
routine calculation shows that the determinant of the submatrix

a) h(zo,y0) = 0mod ™ for some positive integen. where
|zo| < X and|yo| < Y, and

b) [[(zX, yY)|| < €™ /vw. corresponding to alt shifts (i.e., ignoring the-shifts by taking
Thenh(zg, 40) = 0 holds over the integers. t=0)is
Proof: Observe that det,, :enl(nl+1)(nl+2)/3_Xrn(rn—l—l)(rn-l—Q)/?)_an(rn-i—l)(rn-i—Q)/G'

|h (20, 40)| = ‘ > azjargu{)‘ =) ai ;XY (%)Z (%)J For example, whemn = 3 the determinant of the submatrix
‘ ' excluding the bottom block is?° X2°Y 10, Plugging inX = ¢°

L ? J L 5 .

a; ; XY (@) (@) ‘ <3 |, Xiyd| andY = %% we obtain

<>
L et — (MDA G+)/12 _ S m o(m®)
< Vuw||h(zX,yY)|| < e™, r=c —¢c '

It is interesting to note that the dimension of the submatrix is
w = (m+1)(m+2)/2, and so thevth root of the determinant
Fact 4.1 suggests that we should be looking for a polynomialp,. = ¢™(3+4)/6_For us to be able to use Fact 4.1, we must

with small norm that hagzo, 1) as a root module™. To do haveD, < ¢™, implying (5 + 46) < 6. We obtains < 0.25.

but sinceh(zo, yo) =0 moduloe™ we have thak (zo, yo) =0.00

so, given a positive integen we define the polynomials This is exactly Wiener’s result. Hence, a lattice formed by taking
i ok ke only thez-shifts cannot be used to improve on Wiener’s result.
gi(@,y) = x'f (@, y)e and To improve on Wiener’s result we include theshifts into
hiw(z,y) == o fF¥(z,y)e™ . the calculation. For a given value of andt, the product of the
elements on the diagonal of the submatrix corresponding to the

We refer to they; ;, polynomials ase-shifts and thés; ;. poly-
nomials agy-shifts. Observe thatzq, o) is a root of all these
polynomials modula:™ for k = 0,---,m. We are interested  det,, = !™(m+1)/2. xtm(mtl)/2 ytim+Dmtt+l)/2
in finding a low-norm integer linear combination of the polyno- o )

mialsg; x(zX,yY) andh, ,(zX,yY). To do so we form a lat- Plugging in the values ok andY’, we obtain

y-shifts is

tice spanned by the corresponding coefficient vectors. Our goal det, = tm(m+1(+6)/2+t(m+1)(m+t+1)/4

is to build a lattice that has sufficiently small vectors and then Y siz6. 31 e )

use LLL to find them. By Fact 3.2 we must show that the lattice = 3 T teltmT)

spanned by the polynomials has a sufficiently small determi- . . o

nant. The determinant of the entire matrix &t (L) = det,, - det,,

and its dimension i = (m + 1)(m + 2)/2 + t(m + 1).

Given an integern, we build a latticeL spanned by the X .
coefficient vectors of the polynomials fdr = 0,- -, m. For We intend to apply Fact 4.1 to the shortest vectorsinthe LLL-
eachk we useg; w(zX,yY) fori = 0,---,m . & 7and use reduced basis of. To do so, we must ensure that the norm of

by is less thare™ //w. Combining this with Fact 3.2, we must

hiw(zX,yY) for j = 0,---,t for some parameterthat will haP
v (2 X, yY) for j Y P solve for the largest value @fsatisfying

be determined later. For example, when= 3 and¢ = 1 the
Iattlge is spanngd by the rows of the matrix in Fig. 1. o det(L) < ™/

Since the lattice is spanned by a lower triangular matrix, its
determinant is only affected by entries on the diagonal, whistherey = (w2*)*/2. Since the dimensiom is only a function
we give explicitly. Each “block” of rows corresponds to a certaiof 6 (but not of the public exponerd), ~ is a fixed constant,
power ofz. The last block is the result of thegshifts. In the negligible compared te™*. Manipulating the expressions for
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the determinant and the dimension to solveSfrequires tedious mixed shifts off over the monomials used ih are already in-
arithmetic. We provide the exact solution in Appendix A. Hergluded in the lattice. That is, any polynomieik/? f*c™—* can
we carry out the computation ignoring low-order terms. That ibe expressed as an integer linear combinatiom-ehifts and

we write y-shifts. To see this, observe that for ainy, we have
m2 ) o 7 u j—t 1
w =5 tm o+ o(m?), PTED D) N IS S SR
5448 3 3428, 2+m_t2+ 3 . u=0v=0 u=1v=0
det (L) = ¢ 12 m HTa b do(mt), for some integer constanks ., andc, ... Note that whery <
To satisfy det (L) < ¢™* we must have the second summation is vacuous and hence zero. It now follows
that
5+ 46 3+3+26t 2+mt2< 54 tm? i
12 4 4 2 .’L'Zyj fkern—k _ Z Z buweuxu—bfb-l—kern—u—k
This leads to u=0v=0
j—t 1
m?*(—1 +46) — 3tm(1 — 26) + 3t* < 0. + Z Z Cupe’yt fHRem vk
For every m the left-hand side is minimized at = i’“zzvzo
m(1l — 26)/2. Plugging this value in leads to _ Z Z Bun - Guo ot
3 3 u=0v=0
m? —1+46—§(1—26)2+Z(1—26)2 <0 i g
. . + c'u,,'nev . h'u,,'n k
implying —7 + 285 — 126 < 0. Hence ;; "
7 1 i,d £k m—k ; H H i
5 < - 3\/7 ~ 0.284. Consequently’y? f*e is already included in the lattice.
Therefore, for large enough, wheneverd < N%2%4~¢< for V. IMPROVED DETERMINANT BOUNDS

any fixede > 0 we can find a bivariate polynomia| € 7|z, . .
y poly al [ 3] The results of the last section show that the small inverse

such thaty; (2o, yo) = 0 over the integers. Unfortunately, this :
is not enough. To obtain another relation, we use Fact 3.3REPPIEM can be solved when < 0.284. The bound is de-
bound the norm of,. Observe that since the original basis fof'ved from the determinant of the lattiés which gives an upper
L is a triangular matrixy* . is simply the smallest element onPound on the lengths of the shortest vectors of the lattice. In this

the diagonal. This turns out to be the element in the last row $ction, we improve the bounds on the lengths of the shortest
thez-shifts, namelyu* . = X™Y™ which is certainly greater vectors ofL, and show that these improved bounds imply the

d min ' . . 0.292
than1. Hence, Fact 3.3 applies. Combining Fact 4.1 and Fact §ack is effective for alli < N7

we see thab, will yield an additional polynomiag» satisfying We begin with a brief discussion of how we may improve the
g2(20,40) = O if bounds on the shortest vectors. In the last section, we computed

the determinant of a matri%/ built from the coefficients vec-
det (L) < e™@=D) /1y tors of shifts and powers gf. SinceM is triangular, this is just
w1 the product of the entries on the diagonal, carefully balanced

! U 1 1 1
yvherefy = (w2")"7 . For large enqggl‘m, this inequality so that this product is less thafi#*. Onceé > 0.284 the ap-
is guaranteed to hold, since the modifications only affect low-

order terms. Hence, we obtain another polynomia& Z[z, y] proach no longer works, as this prod_uct exceed$ for every
linearly independen’t of; such thatgz(xo,%0) = 0 over the ™ BU if some of the larger, “damaging” terms of this product

. : were removed, we might be able to afford greater values of
integers. We can now attempt to solve fgrby computing the o ; N N

Intuitively, this suggests that we should “throw away” rows of
resultanth(y) = Res, (g1, g2). Thenyy, must be a root ok (y).

The roots ofi(y) are easily determined, and one such root wilzl\/[ W't.h Iargg co_ntr|but|ons to the diagonal. .Unf.ortunately., the
g ; . - resulting lattice is not full-rank, and computing its determinant
exposeyo = 52, allowing us to find the factorization a¥.

Although the polynomials;, . g» are linearly independent, is not so easy. What we will show is that a judicious choice of

they may not be algebraically independent; they might hav%%ws to eliminate results in lattice for which there is an improved

. ound on the determinant, leading to a successful attack for all
common factor. Indeed, in the general case we cannot guarantee

that the resultant(x) is not identically zero. Consequently, we < 0.'292' Spe/cmcally, we S.hOW, that as long .és_< 0.292,
. . thereis a ranky’ < w sublatticeL’ of L that satisfies the de-
cannot claim our result as a theorem. At the moment it is a . s ;
o . o ... sired determinant bound ef** . This results in better bounds
heuristic. Our experiments show it is a very good heuristic, as
) . . ) . n the length of the shortest vectorddf(and hence of.). Most
discussed in Section VIII. We could not find a single example, ., . o .
) . . of this section is devoted to developing the necessary tools for
where the algorithm fails. The reason the algorithm works $o . ) .
. . ) ounding the determinant of nonfull rank lattices. These results
well is that in our lattice, short vectors produced by LLL appear

to behave as independent vectors may be of independent interest.
P ' We use the following approach. First, we introduce the no-

Remark 2: The reader may be wondering why we construdgion of geometrically progressiveatrices, and state the main
the latticeL usingz-shifts andy-shifts of f, but do not explic- theorem to be used to bound the determinant of a submatrix of
itly use mixed shifts of the form’7 f*. The reason is that all any geometrically progressive matrix. A proof of this theorem
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is given in Appendix B. Second, we show that the portion of tH®. A Geometrically Progressive Submatrix
matrix M developed in Section IV corresponding to ghehifts
is geometrically progressive, yielding desirable bounds on t
rectangular matrix formed from selected rowsidf Third, we

Recall the procedure outlined in Section IV for creating the
tice L. We define the polynomials

review the new determinant computation and conclude that the gix(w,y) =z fX(z,y)e™ ™ and
attack outlined in Section IV works for afl < N°-292, he(, ) = yE F¥ (@, y)e™
A. Geometrically Progressive Matrices and form a lattice from the coefficients vectors of every

Recall the latticeL defined from the coefficients vectorsfrii’“_(x;(;?gz imih“(ﬁX’ yY),fork =0,---,m,i=0,---,

of shifts and powers of the bivariate polynomiilz, y). Of We denote byl the portion of the matrix3/ with rows

particular interest is the inclusion of theshifts i, (X, yY"), . . X
which lead to a result improving on Wiener's bound. Wi orres_pondlng to thg‘Sh,lﬁS,.hZ’k and colurr_l_ns correspondlng
beqi A X - g variables of the formx*y",v > w. Specifically, M/, is the

egin by noting that there is a natural organization of these D 1) lower riaht-hand submatrix of tﬁe matrix
rows corresponding to-Shifts into "blocks i, - s for /- J;es)er?[e(::inir:rsgction V. \?Ve make the following claim about
k =0,---,m, and that a similar organization is induced on th P ' 9

corresponding columns (that is, those columns that are zero Iff entries Oty

every row induced by am-shift). To keep the results of this Lemma 5.2: For all positive integersn, ¢, the matrixZ,, is

section general, we work with generic matrices in which thgeometrically progressive with parametérs®™, e, m, 3 + 6,

rows and columns have been divided inte- 1 blocks of size —% —1,1,2).

b. Specifically, leta, b be positive integers and le/ be an Proof: For simplicity, we take: = N% with o = 1. Let
(¢ + 1)b x (a + 1)b matrix. We index the columns by pairs(k, £) be given withk = 0,---,m and? = 1,---,t. The row
(4,4), withi =0,---,aandj = 1,---,b, so that the paifi, j) (k,¢) of M, corresponds to thg-shift h, (X, yY"). Observe
corresponds to th@: + j)th column of M. Similarly, we use

_ m—k_t~xAL pk
the pair(k, £) to index the(bk+£)th row of M, fork = 0, - - - ,a her(@X,yY) = "y YO M@ X, yY)

and/ = 1,---,b. The entry in thé, j)th column of the %, £)th ko o owe
row is denotedM (4, , k, £). Note that the diagonal entries of = Z Zcu,vx v
M are precisely those of the fortd (k, ¢, k, £). u=0v=0
where
Definition 5.1: LetC, D, ¢y, c1, 2, 3, ¢4, 3 be real numbers
with C, D, 3 > 1. A matrix M is said to begeometrically Co = <k> (“) (—1)kmuem—h gu—v yuy vt
progressive with parameterS”, D, co, c1, 2, ¢cs, ca, 3) if the ’ w/, v
following conditions hold for alli,k = 0,---,a andj,£ = The column(s, ;) for i = 0,---,m andj = 1,---.¢ corre-
1,0 sponds to the coefficient af'y*7 in k¢ 1 (xX,yY'), which by
I) |M(L,], k‘,f)| < C. Dc0+c1i+czj+cSk+C4é. the above is
II) M(/{;, £k, K) = Deoterkdealteghdest My(i,j, k, f) =Cjitj—¢
iiiy M(i,j,k,£) = 0 whenever > korj > /. _ </€> < i ) (—1yF=im=h Al=i Xiyi+
iV) /301 +c3 >0 andﬁCQ +cq > 0. ¢ t+9— £

When the parametes§, D, o, c1, c2, c3, ¢4, 3 are understood It is easy to see that the above quantity equaighenever

we say simply thaf// is geometrically progressive i > korj > ( satisfying condition iij). WritingX = ¢’
Y = ez, and knowingA4 < ¢, we see
The following theorem bounds the determinant of a geomet-

rically progressive matrix from which some rows are removed. | M, (i, 4, k, £)]

A proof is given in Appendix B. < ‘ <k> < ‘ ) (—1)Fimt (54t ikt
Theorem 5.1:Let M be an(a+1)bx (a+1)b geometrically AR +1‘7 ; E T
progressive matrix with paramete§, D, co, c1, ¢2, ¢3, ¢4, 3), < m2m . gt Hd)imgi—k+

and letB be a real number. Define satisfying condition i). Furthermore, a routine calculation con-

Sp = {(k,0) €{0,---,a} x {1,---,0}| M(k,£,k,#) < B} firms

and setw := |Sg|. If Listhe lattice defined by the rows, ¢) € My (k. £k, 0) = (3 ) k— 3kt
Sg of M, then
det(L) < ((a + 1)b)w/2(1 + C)'wz H M(k, £k, 0). satisfying condition ii). Finally, observe
(k,£)eSE 1
The basic idea is that when we remove rows with large en- 2- <§ + 5) +(-1)=2620

tries on the diagonal, the resulting submatrix yields a sublatti
with a determinant close to what is expected, to within a certain
multiplicative error. 2-—5+120
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1z Ty --- xmym yt I . I zmym-f-l . mmym-(-t

z-shifts A 0

selected y-shifts 0 M!

Fig. 2. A unitary matrix4 overR such thatM, := AM,;.

so condition iv) is met. Hencé{,, is geometrically progressive and its dimension is

with parameters w=(m+1)(m~+2)/2+w.
2 o m 1+ s 1 119 We aim to showdet (Lz) < ¢ /y wherey = (w2@)*/2. As
we shall see, the dimensian is only a function ofs (but not

of ¢), so~ is only a fixed constant, negligible comparecd:te”.
Remark 3: Whena < 1 we find that}, is geometrically  We begin by computing’’. LetS C {0,---,m}x{L,---,}

progressive with parameters be the subset of indices such thak,(k, ¢, k,¢) < ™ for
1 6§ 1 (k,£) € S, sothatw’ = |S|. Since(k, £) € S only if
<m2m7e7m7—+—,— —1,—1,1,20é> . m+(<5fl)k+lf m
200 o 2« <e

Fora > 1, we have tha\/, is geometrically progressive with We knowZ < (1 — 26)k. Since we have taken= (1 — 26)m
parameters we know every every paiik, ¢) satisfiest < (1 —26)k < ¢, so

£< (1= 28)kif and only if (k, ¢) € S Thus
(2m)*™ e, m i—i—ﬁ _1 -1 1 2c
20 @’ 207 A’ ' _|S|_ZL(1—26/€J>Z (1—-286)k—1]

The proofs of these statements follow as above, with the slight k=0 k=0
modification in the latter case where we u$ec 2¢/ instead _ <1 _ 5) m? + o(m?)
of A < e.
implying
C. Bounding the Determinant of the New Lattice w=1w 4+ (m+ 1) (m+2)/2 = (1 - 8m? + o(m?).

We now have the tools necessary to find improved bounds orlNow we bounddet (L} ). Since this lattice is defined by the
the short vectors af. Namely, we now would like to show thatrows(k, £) € S of A, by Theorem 5.1 we have

for all d < N°292  LLL finds short vectors inM that give rise det(L) < [(m —+ 1)(1 — 26)m]* /2(1 + m2™))*
to polynomialsg; (z, %) andg=(x,y) such thaty; (zo,y0) = 0 N
andg»(zo,70) = 0 holds over the integers. x H My(k. 4.k, 0)

We begin by setting the parameter.= (1 — 26)k. Note (k€S
that this means our lattice will include twice as mayghifts < [(m 4 1)(1 = 28)m]*/2(1 + m?>™) (@)’
as used in Section IV, which, as we shall see, is the reason for m L(1=28)k]
the improved results. Definkl; as follows: Take every row; % H H omH(6=3 )kt 3¢
of M corresponding to the-shifts, and take only those rows k=0 =0
he . of M whose entry on the diagonal is less than or equal _ w /2 2my (w’)?
to ¢™. That is, we throw away those rowviig ;, where the last < ltm + 1)2(51 5226)m] . (L +m™)
entry exceeds™. Clearly, the latticel.; described byi/; is a x o{F=F =5 ) mrotm®),

sublattice ofL, so short vectors id; will be in L. Note thatl(m + 1)(1 — 26)m]¥ /2(1 + m2m)<w’)2 is a function
Since all z-shifts are present i/, we may perform of only § (but not ofe), and thus is negligible comparedas” .

Gaussian elimination to set the flrﬁm + 1)(m + 2)/2 Fina”y, recall from Section IV that

off-diagonal columns of every row to zero. Specifically, there det(A) = det, = om(m+1)(m+2)/3

is a unitary matrix4 overR such thatM, := AM; is a matrix

of the form shown in Fig. 2, wher& is a diagonal matrix and

M; consists of selected rows éf,. Furthermore, sincet is

Y
unitary, the determinant of the lattide, described byA, is Thus we need the bound

equal todet (Ly). _ . det(Ly) = det(A)det(L’)
We would like to obtain a good bound odet (I5). Since

the z-shifts and selecteg-shifts portions of the latticd.» are

orthogonal, it is sufficient to bound the determinant of each sep- < c’" w — 6(1 8)ym®+o(m?)

arately. Letws’ be the number of rows a¥Z,, and Ie_tL; be the \yhich leads to

lattice induced by\/[,;. The determinant of the lattick, is < 1 25 &2

det (Lz) = det (A) - det (L) s T3~ —) m® +o(m®) <0

. Xrn(rn+l)(rn+2)/3 . an(rn+l)(rn+2)/6
_ e(%—l—%)nlg-l—o(rng)'

6 3 3
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implying 26% — 46 + 1 > 0. Hence, we need Whena = % the bound implies that = 0. Consequently,
V2 the attack becomes totally ineffective whenever N1-875,
6<1- 0292 This is an improvement over Wiener’s attack, which becomes

Thus whené < 0.292, for sufficiently largem we have ineffective as soon as > N5
det (L1) < +'e¢™*, implying the norm\; of the shortest vector
of L, satisfiesh\; < ~’¢™. Then theb, found by LLL in L VII. CRYPTANALYSIS OF UNBALANCED RSA

satisfiesh, < yy'¢™, whereyy’ depends only oé and is thus |, this section we study the case when the difference between
negligible compared te™. This vectorb, yields a polynomial the primesy andq is large. Suppose < N¥, andp < ¢ (and,

91(z,y) such thag (o, o) holds over the integers. therefore,3 < 1/2). For simplicity, we again assume that=
Let M7 be the result of applying the Gram-Schmidt orthogare with o ~ 1.

~

onalization process t8/,. It is easy to see that the length of & ynfortunately, we cannot follow the approach of Section IV
vector in thez-shifts portion ofd is simply the corresponding gjrectly, for the following reason. In this case, the small inverse

entry on the diagonal ofi/;, and the length of a vector in problem now becomes: given a polynomjlz, ) = =(A +
the y-shifts portion of AM* is bounded from below by the y) — 1, find (20, yo) satisfying

corresponding entry on the diagonal ;. SO u.,;, iS simply _ 5 1-3
X™Yy™, which is certainly greater thah So as in Section IV, f.(a:o,yo) =0 (mode), Wherflfd < ¢ and[yo| < e :
a similar bound o, can be established, yielding two linearlySince only a weaker bound of =7 is known on the solution

independent relations (xo, o) = 0 andgs (o, yo) = Owhich ¥ = P + ¢, using the previous approach requires a stronger

hold over the integers. bound onxg, and thereforé. In fact, a routine calculation shows
that once < 1/4, this approach produces no results even for
VI. CRYPTANALYSIS OF ARBITRARY ¢ é close to zero.

. . . Therefore, a modified approach is needed. Returning to the
In his paper, Wiener suggests using large values when pga equation, recall (1)

the exponent! is small. This can be done by adding multiples N+1 p+4g
of ¢(N) to e before making it known as the public key. When ed+k <— - T) =1.
¢ > N5, Wiener’s attack will fail even whed is small. We

show that our attack applies even when N'- is used. writing A = N + 1, we know

As described in Section Il, we solve the small inverse F(A-p—q) =2 (mode).
problem: As before, we know the bound
k(A+s)=1 (mode), Where|/€|<2el"'6;_1 and|s| < 2¢!/2* |k| < % < 3de/N < 31T a el

for arbitrary values ofr. We build the exact same lattice used in

] 1-8
Section IV. Working through the calculations one sees that thé now havelp| < N and_|q| < .N '
determinant of the lattice in question is We now have an equation withree unknownsk, p, ¢, the

22 (9063 . product of two of which is known. We may view this problem
det, (L) = ¢5e Zeto=3)to(m?) as follows: given a polynomiaf(z, y, z) = x(A+y + 2) — 2,

det, (L) = B (Rats— )+ 5 L to(tm?) find (o, %0, 20) Satisfying
The dimension is as before. Therefore, to apply Fact4.1 we méégo: %, 70) =0 (mode)
have where|zo| < ¢°, |yo| < ¢°, |20| < 7P, andyozo = N.
m? Y4 6 — 3 n tm? Y4 § — 1 n mt* 1 We now follow an approach similar to the one used in Sec-
o 4 200 2 2 2« tion IV. It is easy to prove a variant of Fact 4.1 for three vari-
m> , ables, and as before, we wish to find a polynomial with small
< 2 +m”  norm that hasgxg, %0, 20) @s a root. Given an integet we de-
which leads to fine the polynomials
m2(2a + 46 —_ 3) — 3tm(1 — 26) + 3t2 < 0 ° gi,k($7 y7 Z) = :L'ka(x’ y7 Z)e'rn—k
As before, the left-hand side is minimizediat, = %m(l—Z&), o hjw(m,y,2) =y f¥(z,y, 2)emF

which leads to

15
m? |20+ 76 — 4 38%) <0 taking care to substitut& for all occurrences of the product
and hence yz. We refer to theg; , as the z-shifts, the h;; as the
1 y-shifts, and theh; , as thez-shifts. We are interested in
§< = —=(1+6a)/2 finding a low-norm integer combination of the polynomials
6 3 gin(aX,yY, 2Z), hip(aX,yY,2Z), and b, (xX,yY, 2Z),
Indeed, fora = 1, we obtain the results of Section IV. Thewhere X = N°,Y = N% andZ = N~ are bounds on
expression shows that when < 1 our attack becomes eventhe respective variables. Again, we build a lattice from the
stronger. For instance, if~ N?/3 then RSA is insecure when- coefficients vectors of the polynomials for &l = 0, - -, m;
everd < N°foré < I — % ~ 0.422. Note that ife ~ N>/3 we usei = 0,---,m —k, j = 0,---,¢t,and? = 0,---,u,
thend must satisfyl > N1/3. for somet and« to be optimized later. We use LLL to find

° h/[7k(x7y7 Z) = Zéfk(x7 y? Z)enl_k
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TABLE |
PARAMETERS FOREXECUTED ATTACKS

Advantage over

n d ) m t rank of lattice running time Wiener’s attack
1000 bits 280 bits 0.280 7 3 45 14 hours 30 bits
2000 bits 550 bits  0.275 7 3 45 65 hours 50 bits
4000 bits 1060 bits 0.265 5 2 25 14 hours 60 bits
10000 bits 2550 bits 0.255 3 1 11 90 minutes 50 bits

short vectors in this lattice, giving rise to two polynomialsvith 7, (y) irreducible overZ (similarly, for x). Hence, the
G1(x,y,z) and Ga(z,y, z) that share(xo,yo,20) as a root unigue solution(zo,yo) was correctly determined in every
over the integers. Plugging m= N/y, we reduce these to thetrial executed. Table | shows the parameters of some attacks
bivariate equationg?; (z,y) and Hx(z,y) and take resultants executed. All experiments use the lattice described in Section V.
to revealyy = p. These tests were performed under Solaris running on a
One additional optimization can be made. We modif$§00-MHz Intel Pentium Il processor. In each of these tests,
the polynomials above, instead usingg;(#X,yY,2Z), was chosen uniformly at random in the rarjgeV®, N°] (thus
yhw(zX,yY, 2Z), and y°hy, (¢ X,yY,2Z), for some ¢ guaranteeing the conditioh> N°-2%). Prior to these results it
which can also be optimized. We refer to this as tverall was not possible to break RSA for such lathe
shift. Now in order to use Fact 4.1 we require the resulting
short vector to be less than the weaker boungh%f™. This IX. CONCLUSIONS AND OPEN PROBLEMS

technigue is most useful wheyis much larger thap, since it Our results show that Wiener's bound on low private expo-

eh_w}natei ogcutr_rencesbcl)f th?o\;anable deis straiahtf d nent RSA is not tight. In particular, we were able to improve the
€ optimization problem 1ot, u, andc IS Straightiorward 1 first fromd < N925 tod < N9-2347_ Using an improved

but tedious. Once the optimal overall shift and the Optimactlnalysis of the determinant. we obtainédc N9-292. Our re-

number ofy- andz-shifts for a giver3 are found, the determi- sults also improve Wiener's attack when large values afe

gaznt O(fj Ti resullgngllatm]:cfg \.N'”tlbe smﬁ\IIBer;ough tor ufse F?Ct ed. We showed that our attack becomes ineffective only once
< and 4.2 providedis sutliciently small. BEIow 1S a isting ot , - n1.875 | contrast, Wiener's attack became ineffective as

values ofé for which we can launch a successful attack. Heréeoon as > NL5.

8 s )
we assume < N© andd < N°. Unfortunately, we cannot state our attack as a theorem since

3 5 we cannot prove that it always succeeds. However, experiments
172 0.847 that we carried out demonstrate its effectiveness. We were not
1/3  0.3183 able to find a single example where the attack fails. This is
1/4  0.3647 similar to the situation with many factoring algorithms, where
1/6  0.4412 one cannot prove that they work; instead one gives strong
1/10  0.5391 heuristic arguments that explain their running time. In our case,
1/50  0.7750 the heuristic “assumption” we make is that the two shortest

1/100  0.8387

vectors in an LLL reduced basis give rise to algebraically
1/1000 0.9483

independent polynomials. Our experiments confirm this as-

sumption. We note that a similar assumption is used in the work
In these experiments, we did not take into account the optif Bleichenbacher [1] and Jutla [7].

mizations suggested in Section V. Therefore, further improve-Our work raises two natural open problems. The first is to

ments may be possible. make our attack rigorous. More importantly, our work is an
It is interesting that low private key attacks become more edpplication of Coppersmith’s techniques to bivariate modular

fective for more unbalanced RSA moduli. Unbalanced modyblynomials. It is becoming increasingly important to rigor-

are used irRSA for paranoidintroduced by Shamir [11]. ously prove that these techniques can be applied to some bi-
variate polynomials.
VIIl. EXPERIMENTS The second open problem is to improve our bounds. A bound

1—-L . .
We ran several dozen experiments to test our results wh\%nd b<I'N tf cannottbg thedﬁdgal a]rlfslv/err.V\I/t |shtoo unnatural.
d > N°25_Our experiments were carried out using the LLL'© ileve te ”corr_e”cl ?;Jtn < ot et ope OI;H aFg
implementation available in Victor Shoup’s NTL package [12[°r0ach eventually will lead 1o a proot ot this stronger bound.

In all our experiments LLL produced two independent relatiorhgI T? conglu?e, we notetthzt VY('iner ZUQQSIStegha defegse ag_agst
g1(z,) andga(x, ). In every case, the resultant e low private exponent attack based on the Chinese Remainder

Theorem (CRT). WhelWV = pq, the idea is to use a private kdy
such that botl,, = dmod (p — 1) andd, = dmod (¢ — 1) are
small. Suchd speed up RSA signature generation since RSA
with respect taz was a polynomial of the form signatures are often generated moduland ¢ separately and
then combined using the CRT. Sindg # d,, the value of
hy) = w+p+ hi(y) d is likely to be large, namely, close % V). Consequently,

h(y) := Resa(91(x,9), g2(2, )
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our low-exponent attack does not apply to sdclt is an open there is a unitary transformation ov@rthat puts the submatrix
problem whether there is an efficient attack on such private keysto a diagonally dominant form, giving the desired determinant

The best known attack runs in tingin (\/d,,, \/dg). bounds. We then verify that these bounds yield the conclusion
of Theorem 5.1.
APPENDIX A Let M be ann x n triangular matrix with rows;, - - - , w,,.
PRECISE CALCULATION OF THE DETERMINANT We write thejth component ofy; asw; ;. We say thatM is

gonally dominant to within a facta® when|w; ;| < C|u; ;|
4,5 =1,---,n. When the facto€” is understood, we say
simply thatM is dlagonally dominant
det, = e (mT1(m+2)(5+45)/12 Let S be a subset of the row indices. We defihg| s to be
det, = etm(m+DA+8)/2+t(m+1)(m+t+1)/4 the |S| x n matrix whose rows are;, i € S. We say that an
Y arbitraryw x n matrix M is diagonally dominant when there
The determinant of the entire latticedst,, - det, and its dimen- is anS € {1,---,n} and diagonally dominant matrix/ such

We give the exact expressions evaluating to the determlnff\nz’[l
of the lattice described in Section IV. We know

sionisw = (m + 1)(m + 2)/2 + t(m + 1). that M = M |s and|S| = w. We say that a latticd is di-
To satisfy det (L) = det,, - det,, < ¢™* we must have agonally dominant when there is a basis - - - , u,, for L such
5 4 46 146 that the matrix with rows., - - -, u,, is diagonally dominant.

Diagonally dominant lattices have determinants that are easy to

m(m + 1)(m + 2) 12 +tm(m+1)——
bound, as shown in the following fact.

ttm+ D(m+t+1)
T 4 FactB.1: Letw < n be given and také C {1,---,n} with
|S| = w. If Lis a lattice spanned by the rows, ¢ € S of a

2

m{m + 1)(m + 2)

2 +tm(m +1) diagonally dominant matri®/, then
which leads to det (L) < n*“/?C"¥ H i i
m(m + 2)(—1+ 48) + 3tm(—1 4 26) + 3t(t + 1) < 0. s
S (1-28)—1 Proof: Observe that sincgu?|| < ||u;|| we have
For everym the left hand side is minimized at= =—~—.
Plugging this value in leads to det(L) = [T Il ll < T llwill < ] v/l s
—(3 4 2m + Tm?) + 8(28m? + 20m) — 12m26% < 0 e e e
_ nw/?cw H |U'z Z| O
implying i€s
5< T 1 7 & oo 9 Now let M be an(a + 1)b x (a + 1)b geometrically pro-
6 3 6m’ gressive matrix. Observe that if for every r@#, £) the bound

Deotevitezitesktest for the column(s, 5) is less than the bound
Deoterktettesktest for the entry on the diagonal, then by con-
ditions i) and ii) on geometrically progressive matrices we have

As was shown in Section IV, when goes to infinity this values
converges to

5 T VT 47 that} is diagonally dominant to within a factéf. The columns
< 6 3 0.2847. of interest are those in which this bound does not hold; to wit,
For a particular value of < 0.2847 we must taken to be at \(]V;gsn a column indexi, j) badwhen the following condition

least

coteritesjtesktcal coterktesbtcezsktcgl
—1 4108 + 2(—5 + 166 + 1662)1/2 Do Al o prema e

7 — 286 + 1262 ' or, equivalentlye; (k—4)+c2(£—4) < 0. It should be noted that
For example, whe# = 0.27 we must taken > 10 leading to the “badness” of a column is a statement aboubitendon the
a lattice of dimensiom6. This explicit bound can be improvedentry in the column, which is a function of tparametersf the
using the techniques of Section V. In fact, the experiments dgeometrically progressive matrix, not of the entry itself. Indeed,

scribed in Section VIII show that a lattice of dimensi¢his the actual entryM (4,5, k, ) of a bad column(4, j) could be
sufficient for§ = 0.275. zero, leading us to the following observation.

Remark Bl:Let M be a geometrically progressive matrix
and S a subset of the rows. W/ (¢, j, k,¢) = 0 for every bad
column(i, j) of every row(k, £) € S, thenM | s is diagonally

This Appendix provides a proof of Theorem 5.1. dominant to within a factor”. This is because for eadh, ;)

We use the following approach. First we introduce the notidhat is not bad in the roWk, ), we have
of diagonally domina_ntnatrices, and _show that there is an easy M, j.k,8) < O - Deotevieaitesheest
bound on the determinant of any lattice formed from a subset of IR
the rows of a diagonally dominant matt{ . We then show that < . Dooterktettehted
for certain submatrices of geometrically progressive matrices =C-M(k,t kD).

APPENDIX B
PrROOF OFTHEOREM 5.1
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Remark B1 suggests that we should be looking for a submalemma B.3:Let M be an(a + 1)b x (a + 1)b geometrically
trix M | s whose entries are zero in bad columns. Although thgrogressive matrix with parametgf§, D, co, ¢1, ¢2, ¢s3, ¢4, 3),
is unlikely for any submatrix/ | s of the matrix)M/ developed let B € R be a constant, define
in Section IV, what we shall see is that there is a unitary trans-
formation ovelR that eliminates entries at bad columns in rows’s = {(k,£) € {0,---,a} x {1,---,b} | M(k, £, k,¢) < B}
of M | s. Once the diagonal dominance of this transformed sub- ) ) )
matrix has been established, Fact B.1 can then be employe@§ Setw := |Si|. There is av x w unitary matrix(/ overR
bound the determinant of the corresponding lattice. such thatl/ - M | 5, is diagonally dominant to within a factor

Our goal now is to show that special submatrices of geoméil—Jr a)*. i , i
rically progressive matrices can be put into a diagonally domi- Proof: We proceed by induction. There arerows in the
nant form. Consider the following situation: suppose we take®tx M | s,;, and we build matrice¢/, such that the last
subsetS of the rows of a geometrically progressive matik  fOWS of’U,, +M | s, are diagonally dominafito within a factor
and wish to bound the determinant of the lattice described ’%IJF C)*, and the first —  rows identical to those it/ | s.,.
M | s. We wish to guarantee that there are “enough” rows il "€V we seek i, o _ -
cluded inS so that we may eliminate all nonzero entries at bad Cléarly, Uo = I trivially satisfies this condition. Now sup-

columns in rows of\/ | 5. We prove this for certain natural sub-P0S€ We have a unitary matrlX._, overR such that the last

setsS in Lemma B.2. We then use this guarantee to show thiag™ 1 Fows of U, - M | 5, are diagonally dominant to within

such an elimination procedure will be successful; namely, idactor(1+ ¢)* and the firsto — r rows are identical to those

show that there is a unitary transformatiGnover R such that ©f M | s,;- We would like to findl;. that satisfies this condition
U - M | s is diagonally dominant. This is shown in Lemma B.3{Or the last- rows, and we do this by finding a unitary matiix
leading directly to a proof of Theorem 5.1. overR suchthat/, := V-U,._ satisfies this condition. Roughly

_ speaking, the purpose bfis to “clean up” row(w — r + 1) of

Lemma B.2:Let M be an(a 4 1)b x (a+1)b geometrically 57| :thatis, it guarantees thét+C)® times the last column
progressive matrix with paramete(i§, D, co, c1, ¢z, ¢3,¢4,8),  of row (w—r+1) dominates all other columns of rcw —7+1)
let B € R be a constant. Define iNV.U._1-M]|s,.

SinceM | s, is formed from rows ofA/, we may choose a
pair (k, £) such that ron(w — r 4+ 1) of M | s,, is the(k, £)th
Forall (k,¢) € Spandi < k,j5 < ¢, if column(i, 5) is bad in rpwofM. By LemmaB.Z,forevv_ery bad,"?“."’@m) satisfying

A ¢ < kandj < ¢, the corresponding rog, j) is in Sg. So there
row (k,¢) then(i,j) € Sg. : 2
are at mostv — 1 bad columns with nonzero entries in the row

Sp = {(k,() 6{07"'7a} X {17"'7b}|M(k7£7k7£) SB}

Proof: We begin by assuming thati,j) is bad, so

Deik—id+e2(t=3) < 1 and thus (clearly, (%, £) is not bad).
We build V' in stages by constructing elementary row oper-
DB—Der (k=i)+(B=1)ea (¢—j) _ (Dcl(k—i)Jcm(e—j))('a*l) <1 ationsVi,.-- .V, and lettingV’ := Viy_1---Vip—z--- V1.
~ ' EachV, sets another bad colunif, j,) in the row to0, so that

(3 the(w —»+ Dthrowof V, --- Vi - U,._; - M | s, has nonzero

entries in at mosty — s — 1 bad columns. We show that eath

increases every column of the row by at most a factdi efC).
Define

Seeking contradiction, we now assurfiej) ¢ Sp, that is,
M(i, j,i,7) > B. It follows that

D(CI+CS)i+(CZ+C4)j = M(LaJaLaJ) > B Z M(kvga kvg) (s)
— plertes)bt(eates)t = (Ve Vi Uy M sp) | w1}
that is,v(*) is the(w 47— 1)throw of V, - - - V1 - U,y - M | s,
We denote the entry in thig, j)th column ofv(*) asv(*)(i, j).
Dlertea)(k—i)H(eates) (=) o . (4) We maintain the following three invariants foe= 1, - - -, w—1:
) [0, )] < (14 C)*C - Deoteritesiteshtest for gl
columns(z, j);
DBertes)(k—i)t(Feate)(t=3) (5) i) @ > korj > ¢impliesv® (i, j) = 0; and
iii) the number of bad columns with nonzero entries/if)
is at mostw — s — 1.

Hence

Combining (3) and (4) yields

Note thati < k£ andj < ¢ by the hypotheses of the theorem,
and we are guaranteéid; + ¢z > 0 andfc; + ¢4 > 0 sinceM

is geometrically progressive. So These conditions are satisfied trivially fer= 0, sincev© is
identical to row(k, £) of the geometrically progressive matrix
(Ber +c3)(k —4) + (Bea +c)(£ —5) 2 0. M. Now suppose that every colunfn, j) of v¢*~1 satisfies
these three conditions. If there are no nonzero entrie$°of)
FurthermoreD > 1, so at bad columns, we are done, and may tike - -, V,,_1 := I.
Dloertes)(k—it(aestes) (=) > po — | Otherwise, let(i,, j,) be the rightmost bad column such that

o ) 1To say that the last rows of aw x n matrix M are diagonally dominant
contradicting (5). Hencéy, j) € Sp as desired. 0 means simply thabf | (.1 1),...,. is diagonally dominant.
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v~U(i,,4,) # 0. Sincev®~Y(i,, j,) # 0, we know by the
inductive hypothesis that < % andj, < £. Since(is, js) is

also bad, we know thdts, j;) € Sp. So we may pick & such
that row(is, j5) of M is rowt of M | s,. DefineV; to be the
elementary row operation that subtraﬁ%migs’ﬁj) times row
t from row (w — r + 1). Observe for every columft, 5)

©(is, js)
)G ,~‘<‘(s_1), ‘ Y s ds) i
‘U (L’J) —_ v (L’J) + M(i57j57i57j5) (L7J7LS7JS)

< (1+C)5—10 B Dc0+c1i+czj+cSk+C4Z
(1—1—0)5_10 . Droteris+cajsteskteal

+

Deoteristezjstesisteads
. . Deoteritezjtesisteasst

:(1+C)SC . D00+Cli+czj+czk+c4é.

So condition i) is met.

Now let (¢, j) be given with eithet > k or j > ¢. Since
v~V(4,,4,) # 0, we know by condition ii) of the inductive
hypothesis that, < k andj, < ¢. So eitheri > k > ¢, or
Jj > £>js, implying M(¢,7,4s,5s) = 0. Thus

v~ (i,, 4,)

V) = R

=0-0=0

) M(L717 isvjs)

satisfying condition ii).

We now claim that the number of bad columns with nonzero

entries inv®®) is at mostw — s— 1. Clearly,v® (i, j,;) = 0, and
columns to the right ofi,, j, ) are unchanged fromt*~1). Since
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dominant to within a factofl + C)*. Finally, takingl/ := U/,
completes the result. O

We are now ready to complete the proof of Theorem 5.1.

Proof of Theorem 5.1:By Lemma B.3 we have & x w
unitary matrixt/ overR such that/- M | s,, is diagonally dom-
inant to within a facto(1 + C)*. Sincel is unitary ovefR, the
lattice L’ induced by the rows o/ - M | s, has the same de-
terminant as the latticé induced by the rows oM/ | s, S0 by
Fact B.1 yielding the desired bound

det(L) = det(L) < ((a + 1)b)*/2(1 + )
x [ Mk k0.

(k,0)€SH
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