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Cryptanalysis of RSA with Private Keyd
Less ThanN0:292

Dan Boneh and Glenn Durfee

Abstract—We show that if the private exponent used in the
RSA (Rivest–Shamir–Adleman) public-key cryptosystem is less
than 0 292 then the system is insecure. This is the first improve-
ment over an old result of Wiener showing that when is less than

0 25 the RSA system is insecure. We hope our approach can be
used to eventually improve the bound to less than 0 5.

Index Terms—Cryptanalysis, lattice basis reduction, LLL, low-
exponent RSA, RSA.

I. INTRODUCTION

T O speed up RSA (Rivest–Shamir–Adleman system) sig-
nature generation one is tempted to use a small private ex-

ponent . Unfortunately, Wiener [14] showed over ten years ago
that if one uses then the RSA system can be broken.
Since then there have been no improvements to this bound. Ver-
heul and Tilborg [13] showed that as long as it is pos-
sible to expose in less time than an exhaustive search; however,
their algorithm requires exponential time as soon as .

In this paper we give the first substantial improvement to
Wiener’s result. We show that as long as one can
efficiently break the system. In particular, when an
attacker can recover the private RSA key given the public key.
We hope our approach will eventually lead to what we believe
is the correct bound, namely . Our results are based
on the seminal work of Coppersmith [3].

Wiener describes a number of clever techniques for avoiding
his attack while still providing fast RSA signature generation.
One such suggestion is to use a large value of. Indeed,
Wiener’s attack provides no information as soon as .
In contrast, our approach is effective as long as .
Consequently, larger values ofmust be used to defeat the
attack. We discuss this variant in Section VI.

II. OVERVIEW OF OUR APPROACH

Recall that an RSA public key is a pair of integers
where is the product of two -bit primes. For simplicity,
we assume . The corresponding private
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key is an integer satisfying where
. Note that both and are typically less

than . It follows that there exists an integersuch that

(1)

Writing and , we know

Throughout the paper we write for some . Typi-
cally, is of the same order of magnitude as(e.g., )
and, therefore, is very close to . As we shall see, when is
much smaller than our results become even stronger.

Suppose the private exponentsatisfies . Wiener’s
results show that when the value of can be efficiently
found given and . Our goal is to show that the same holds
for larger values of . By (1) we know that

Similarly, since both and are less than we know that

To summarize, taking (which is the common case) and
ignoring small constants, we end up with the following problem:
find integers and satisfying

where and
(2)

The problem can be viewed as follows: given an integer, find
an element “close” to whose inverse modulois “small.” We
refer to this as thesmall inverse problem. Clearly, if for a given
value of one can efficiently list all the solutions to the
small inverse problem, then RSA with private exponent smaller
than is insecure (simply observe that givenmodulo one
can factor immediately, since ). Currently we can solve
the small inverse problem whenever .

Remark 1: A simple heuristic argument shows that for any
, if is bounded by (i.e., ) then the small

inverse problem (see (2)) is very likely to have a unique solution.
The unique solution enables one to break RSA. Therefore, the
problem encodes enough information to suggest that RSA with

is insecure. For we have that , so
the small inverse problem will no longer have a unique solution.
Therefore, we believe this approach can be used to show that

is insecure, but gives no results for .

0018–9448/00$10.00 © 2000 IEEE
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The next section gives a brief introduction to lattices over.
A first pass at a solution to the small inverse problem when

is close to is given in Section IV. In Section V, we im-
prove this approach and prove the main result of the paper. Sec-
tion VI provides a solution for arbitrary . In Section VII, we
discuss a variant of our attack which works forunbalancedRSA
moduli. These are moduli where is much larger than
Finally, Section VIII describes experimental results with the at-
tack algorithm.

III. PRELIMINARIES

Let be linearly independent vectors with
. A lattice spanned by is the set of all in-

teger linear combinations of . We say that the lattice
is full-rank if . We state a few basic results about lattices
and lattice basis reduction and refer to [9] for an introduction.
Lattice basis reductions are frequently used in the cryptanalysis
of public key systems [6].

Let be a lattice spanned by . We denote by
the vectors obtained by applying the Gram-Schmidt

process to the vectors . We define the determinant of
the lattice as

where denotes the Euclidean norm on vectors. Ifis a
full-rank lattice then the determinant of is equal to the de-
terminant of the matrix whose rows are the basis vectors

.

Fact 3.1 (LLL): Let be a lattice spanned by .
The LLL (Lenstra–Lenstra–Lovász) algorithm, given

, runs in polynomial time and produces a
new basis of satisfying

1) , for all .

2) For all , if then for all .

We note that an LLL-reduced basis satisfies some stronger
properties, but those are not relevant to our discussion.

Fact 3.2: Let be a lattice and be an LLL-re-
duced basis of . Then

Proof: Since the bound immediately follows from

In the spirit of a recent result due to Jutla [7] we provide a
bound on the norm of other vectors in an LLL reduced basis.
For a basis of a lattice , define

Fact 3.3: Let be a lattice spanned by and let
be the result of applying LLL to the given basis.

Suppose . Then

Proof: It is well known that is a lower bound on the
length of the shortest vector in. Consequently, .
We obtain

Hence

which leads to

Note that since . The bound now
follows.

Similar bounds can be derived for other’s. For our purposes
the bound on is sufficient.

IV. SOLVING THE SMALL INVERSEPROBLEM

In this section we focus on the case whenis of the same
order of magnitude as , i.e., if then is close to . To
simplify the exposition, in this section we simply take .
In the next section we give the general solution for arbitrary.
When the small inverse problem is the following: given
a polynomial , find satisfying

where and

We show that the problem can be solved whenever
. We begin by giving an algorithm that works

when . Our solution is based on a pow-
erful technique due to Coppersmith [3], as presented by How-
grave-Graham [5]. We note that for this particular polynomial
our results beat the generic bound given by Coppersmith. For
simplicity, let and .

Given a polynomial

we define

The main tool we use is stated in the following fact. The fact
shows that if a polynomial has low norm then every
small root of modulo a big modulus is also a root of

over the integers.
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Fig. 1. The matrix spanned byg andh for k = 0; � � � ; 3; i = 0; � � � ; 3� k; andj = 0; 1. The “–” symbols denote nonzero entries whose value we do
not care about.

Fact 4.1 (HG98): Let be a polynomial
which is a sum of at most monomials. Suppose that

a) for some positive integer where
and , and

b) .

Then holds over the integers.
Proof: Observe that

but since modulo we have that .

Fact 4.1 suggests that we should be looking for a polynomial
with small norm that has as a root modulo . To do
so, given a positive integer we define the polynomials

and

We refer to the polynomials as -shifts and the poly-
nomials as -shifts. Observe that is a root of all these
polynomials modulo for . We are interested
in finding a low-norm integer linear combination of the polyno-
mials and . To do so we form a lat-
tice spanned by the corresponding coefficient vectors. Our goal
is to build a lattice that has sufficiently small vectors and then
use LLL to find them. By Fact 3.2 we must show that the lattice
spanned by the polynomials has a sufficiently small determi-
nant.

Given an integer , we build a lattice spanned by the
coefficient vectors of the polynomials for . For
each we use for and use

for for some parameter that will
be determined later. For example, when and the
lattice is spanned by the rows of the matrix in Fig. 1.

Since the lattice is spanned by a lower triangular matrix, its
determinant is only affected by entries on the diagonal, which
we give explicitly. Each “block” of rows corresponds to a certain
power of . The last block is the result of the-shifts. In the

example in Fig. 1, , so only linear shifts of are given. As
we shall see, the-shifts are the main reason for our improved
results.

We now turn to calculating the determinant of the lattice. A
routine calculation shows that the determinant of the submatrix
corresponding to all shifts (i.e., ignoring the-shifts by taking

) is

For example, when the determinant of the submatrix
excluding the bottom block is . Plugging in
and we obtain

It is interesting to note that the dimension of the submatrix is
, and so the th root of the determinant

is . For us to be able to use Fact 4.1, we must
have , implying . We obtain .
This is exactly Wiener’s result. Hence, a lattice formed by taking
only the -shifts cannot be used to improve on Wiener’s result.

To improve on Wiener’s result we include the-shifts into
the calculation. For a given value of and , the product of the
elements on the diagonal of the submatrix corresponding to the
-shifts is

Plugging in the values of and , we obtain

The determinant of the entire matrix is
and its dimension is .

We intend to apply Fact 4.1 to the shortest vectors in the LLL-
reduced basis of . To do so, we must ensure that the norm of

is less than . Combining this with Fact 3.2, we must
solve for the largest value ofsatisfying

where . Since the dimension is only a function
of (but not of the public exponent), is a fixed constant,
negligible compared to . Manipulating the expressions for
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the determinant and the dimension to solve forrequires tedious
arithmetic. We provide the exact solution in Appendix A. Here,
we carry out the computation ignoring low-order terms. That is,
we write

To satisfy we must have

This leads to

For every the left-hand side is minimized at
. Plugging this value in leads to

implying . Hence

Therefore, for large enough , whenever for
any fixed we can find a bivariate polynomial
such that over the integers. Unfortunately, this
is not enough. To obtain another relation, we use Fact 3.3 to
bound the norm of . Observe that since the original basis for

is a triangular matrix, is simply the smallest element on
the diagonal. This turns out to be the element in the last row of
the -shifts, namely, , which is certainly greater
than . Hence, Fact 3.3 applies. Combining Fact 4.1 and Fact 3.3
we see that will yield an additional polynomial satisfying

if

where . For large enough , this inequality
is guaranteed to hold, since the modifications only affect low-
order terms. Hence, we obtain another polynomial
linearly independent of such that over the
integers. We can now attempt to solve forby computing the
resultant . Then must be a root of .
The roots of are easily determined, and one such root will
expose , allowing us to find the factorization of .

Although the polynomials are linearly independent,
they may not be algebraically independent; they might have a
common factor. Indeed, in the general case we cannot guarantee
that the resultant is not identically zero. Consequently, we
cannot claim our result as a theorem. At the moment it is a
heuristic. Our experiments show it is a very good heuristic, as
discussed in Section VIII. We could not find a single example
where the algorithm fails. The reason the algorithm works so
well is that in our lattice, short vectors produced by LLL appear
to behave as independent vectors.

Remark 2: The reader may be wondering why we construct
the lattice using -shifts and -shifts of , but do not explic-
itly use mixed shifts of the form . The reason is that all

mixed shifts of over the monomials used in are already in-
cluded in the lattice. That is, any polynomial can
be expressed as an integer linear combination of-shifts and
-shifts. To see this, observe that for any, we have

for some integer constants and . Note that when
the second summation is vacuous and hence zero. It now follows
that

Consequently, is already included in the lattice.

V. IMPROVED DETERMINANT BOUNDS

The results of the last section show that the small inverse
problem can be solved when . The bound is de-
rived from the determinant of the lattice, which gives an upper
bound on the lengths of the shortest vectors of the lattice. In this
section, we improve the bounds on the lengths of the shortest
vectors of , and show that these improved bounds imply the
attack is effective for all .

We begin with a brief discussion of how we may improve the
bounds on the shortest vectors. In the last section, we computed
the determinant of a matrix built from the coefficients vec-
tors of shifts and powers of. Since is triangular, this is just
the product of the entries on the diagonal, carefully balanced
so that this product is less than . Once the ap-
proach no longer works, as this product exceeds for every

. But if some of the larger, “damaging” terms of this product
were removed, we might be able to afford greater values of.
Intuitively, this suggests that we should “throw away” rows of

with large contributions to the diagonal. Unfortunately, the
resulting lattice is not full-rank, and computing its determinant
is not so easy. What we will show is that a judicious choice of
rows to eliminate results in lattice for which there is an improved
bound on the determinant, leading to a successful attack for all

. Specifically, we show that as long as ,
there is a rank sublattice of that satisfies the de-
sired determinant bound of . This results in better bounds
on the length of the shortest vectors of(and hence of ). Most
of this section is devoted to developing the necessary tools for
bounding the determinant of nonfull rank lattices. These results
may be of independent interest.

We use the following approach. First, we introduce the no-
tion of geometrically progressivematrices, and state the main
theorem to be used to bound the determinant of a submatrix of
any geometrically progressive matrix. A proof of this theorem
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is given in Appendix B. Second, we show that the portion of the
matrix developed in Section IV corresponding to the-shifts
is geometrically progressive, yielding desirable bounds on the
rectangular matrix formed from selected rows of. Third, we
review the new determinant computation and conclude that the
attack outlined in Section IV works for all .

A. Geometrically Progressive Matrices

Recall the lattice defined from the coefficients vectors
of shifts and powers of the bivariate polynomial . Of
particular interest is the inclusion of the-shifts ,
which lead to a result improving on Wiener’s bound. We
begin by noting that there is a natural organization of these
rows corresponding to-shifts into “blocks” for

and that a similar organization is induced on the
corresponding columns (that is, those columns that are zero in
every row induced by an-shift). To keep the results of this
section general, we work with generic matrices in which the
rows and columns have been divided into blocks of size
. Specifically, let be positive integers and let be an

matrix. We index the columns by pairs
, with and , so that the pair

corresponds to the th column of . Similarly, we use
the pair to index the th row of , for
and . The entry in the th column of the th
row is denoted . Note that the diagonal entries of

are precisely those of the form .

Definition 5.1: Let be real numbers
with . A matrix is said to begeometrically
progressive with parameters if the
following conditions hold for all and

:

i) .

ii) .

iii) whenever or .

iv) and .

When the parameters are understood
we say simply that is geometrically progressive.

The following theorem bounds the determinant of a geomet-
rically progressive matrix from which some rows are removed.
A proof is given in Appendix B.

Theorem 5.1:Let be an geometrically
progressive matrix with parameters ,
and let be a real number. Define

and set . If is the lattice defined by the rows
of , then

The basic idea is that when we remove rows with large en-
tries on the diagonal, the resulting submatrix yields a sublattice
with a determinant close to what is expected, to within a certain
multiplicative error.

B. A Geometrically Progressive Submatrix

Recall the procedure outlined in Section IV for creating the
lattice . We define the polynomials

and

and form a lattice from the coefficients vectors of every
and , for

, and .
We denote by the portion of the matrix with rows

corresponding to the-shifts and columns corresponding
to variables of the form . Specifically, is the

lower right-hand submatrix of the matrix
presented in Section IV. We make the following claim about

the entries of .

Lemma 5.2:For all positive integers the matrix is
geometrically progressive with parameters

.
Proof: For simplicity, we take with . Let
be given with and . The row
of corresponds to the-shift . Observe

where

The column for and corre-
sponds to the coefficient of in , which by
the above is

It is easy to see that the above quantity equalswhenever
or , satisfying condition iii). Writing

and knowing , we see

satisfying condition i). Furthermore, a routine calculation con-
firms

satisfying condition ii). Finally, observe

and
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Fig. 2. A unitary matrixA over such thatM := AM .

so condition iv) is met. Hence, is geometrically progressive
with parameters

Remark 3: When we find that is geometrically
progressive with parameters

For , we have that is geometrically progressive with
parameters

The proofs of these statements follow as above, with the slight
modification in the latter case where we use instead
of .

C. Bounding the Determinant of the New Lattice

We now have the tools necessary to find improved bounds on
the short vectors of . Namely, we now would like to show that
for all , LLL finds short vectors in that give rise
to polynomials and such that
and holds over the integers.

We begin by setting the parameter . Note
that this means our lattice will include twice as many-shifts
as used in Section IV, which, as we shall see, is the reason for
the improved results. Define as follows: Take every row
of corresponding to the-shifts, and take only those rows

of whose entry on the diagonal is less than or equal
to . That is, we throw away those rows where the last
entry exceeds . Clearly, the lattice described by is a
sublattice of , so short vectors in will be in .

Since all -shifts are present in , we may perform
Gaussian elimination to set the first
off-diagonal columns of every row to zero. Specifically, there
is a unitary matrix over such that is a matrix
of the form shown in Fig. 2, where is a diagonal matrix and

consists of selected rows of . Furthermore, since is
unitary, the determinant of the lattice described by is
equal to .

We would like to obtain a good bound on . Since
the -shifts and selected-shifts portions of the lattice are
orthogonal, it is sufficient to bound the determinant of each sep-
arately. Let be the number of rows of , and let be the
lattice induced by . The determinant of the lattice is

and its dimension is

We aim to show where . As
we shall see, the dimension is only a function of (but not
of ), so is only a fixed constant, negligible compared to .

We begin by computing . Let
be the subset of indices such that for

, so that . Since only if

we know . Since we have taken ,
we know every every pair satisfies , so

if and only if . Thus

implying

Now we bound . Since this lattice is defined by the
rows of , by Theorem 5.1 we have

Note that is a function
of only (but not of ), and thus is negligible compared to .
Finally, recall from Section IV that

Thus we need the bound

which leads to
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implying . Hence, we need

Thus when , for sufficiently large we have
, implying the norm of the shortest vector

of satisfies . Then the found by LLL in
satisfies , where depends only on and is thus
negligible compared to . This vector yields a polynomial

such that holds over the integers.
Let be the result of applying the Gram-Schmidt orthog-

onalization process to . It is easy to see that the length of a
vector in the -shifts portion of is simply the corresponding
entry on the diagonal of , and the length of a vector in
the -shifts portion of is bounded from below by the
corresponding entry on the diagonal of . So is simply

, which is certainly greater than. So as in Section IV,
a similar bound on can be established, yielding two linearly
independent relations and which
hold over the integers.

VI. CRYPTANALYSIS OF ARBITRARY

In his paper, Wiener suggests using large values ofwhen
the exponent is small. This can be done by adding multiples
of to before making it known as the public key. When

, Wiener’s attack will fail even when is small. We
show that our attack applies even when is used.

As described in Section II, we solve the small inverse
problem:

where and

for arbitrary values of . We build the exact same lattice used in
Section IV. Working through the calculations one sees that the
determinant of the lattice in question is

The dimension is as before. Therefore, to apply Fact 4.1 we must
have

which leads to

As before, the left-hand side is minimized at
which leads to

and hence

Indeed, for , we obtain the results of Section IV. The
expression shows that when our attack becomes even
stronger. For instance, if then RSA is insecure when-
ever for . Note that if
then must satisfy .

When the bound implies that . Consequently,
the attack becomes totally ineffective whenever .
This is an improvement over Wiener’s attack, which becomes
ineffective as soon as .

VII. CRYPTANALYSIS OF UNBALANCED RSA

In this section we study the case when the difference between
the primes and is large. Suppose , and (and,
therefore, ). For simplicity, we again assume that

with .
Unfortunately, we cannot follow the approach of Section IV

directly, for the following reason. In this case, the small inverse
problem now becomes: given a polynomial

, find satisfying

where and

Since only a weaker bound of is known on the solution
, using the previous approach requires a stronger

bound on , and therefore. In fact, a routine calculation shows
that once , this approach produces no results even for

close to zero.
Therefore, a modified approach is needed. Returning to the

RSA equation, recall (1)

Writing , we know

As before, we know the bound

we now have and .
We now have an equation withthreeunknowns the

product of two of which is known. We may view this problem
as follows: given a polynomial ,
find satisfying

where and

We now follow an approach similar to the one used in Sec-
tion IV. It is easy to prove a variant of Fact 4.1 for three vari-
ables, and as before, we wish to find a polynomial with small
norm that has as a root. Given an integer we de-
fine the polynomials

•

•

•

taking care to substitute for all occurrences of the product
. We refer to the as the -shifts, the as the

-shifts, and the as the -shifts. We are interested in
finding a low-norm integer combination of the polynomials

and
where , and are bounds on
the respective variables. Again, we build a lattice from the
coefficients vectors of the polynomials for all ;
we use and
for some and to be optimized later. We use LLL to find
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TABLE I
PARAMETERS FOREXECUTED ATTACKS

short vectors in this lattice, giving rise to two polynomials
and that share as a root

over the integers. Plugging in , we reduce these to the
bivariate equations and and take resultants
to reveal .

One additional optimization can be made. We modify
the polynomials above, instead using

and for some
which can also be optimized. We refer to this as theoverall
shift. Now in order to use Fact 4.1 we require the resulting
short vector to be less than the weaker bound of . This
technique is most useful whenis much larger than, since it
eliminates occurrences of the variable.

The optimization problem for and is straightforward
but tedious. Once the optimal overall shift and the optimal
number of - and -shifts for a given are found, the determi-
nant of the resulting lattice will be small enough to use Facts
3.2 and 4.1 provided is sufficiently small. Below is a listing of
values of for which we can launch a successful attack. Here
we assume and .

In these experiments, we did not take into account the opti-
mizations suggested in Section V. Therefore, further improve-
ments may be possible.

It is interesting that low private key attacks become more ef-
fective for more unbalanced RSA moduli. Unbalanced moduli
are used inRSA for paranoidsintroduced by Shamir [11].

VIII. E XPERIMENTS

We ran several dozen experiments to test our results when
. Our experiments were carried out using the LLL

implementation available in Victor Shoup’s NTL package [12].
In all our experiments LLL produced two independent relations

and . In every case, the resultant

with respect to was a polynomial of the form

with irreducible over (similarly, for ). Hence, the
unique solution was correctly determined in every
trial executed. Table I shows the parameters of some attacks
executed. All experiments use the lattice described in Section V.

These tests were performed under Solaris running on a
500-MHz Intel Pentium III processor. In each of these tests,
was chosen uniformly at random in the range (thus
guaranteeing the condition ). Prior to these results it
was not possible to break RSA for such large.

IX. CONCLUSIONS ANDOPEN PROBLEMS

Our results show that Wiener’s bound on low private expo-
nent RSA is not tight. In particular, we were able to improve the
bound first from to . Using an improved
analysis of the determinant, we obtained . Our re-
sults also improve Wiener’s attack when large values ofare
used. We showed that our attack becomes ineffective only once

. In contrast, Wiener’s attack became ineffective as
soon as .

Unfortunately, we cannot state our attack as a theorem since
we cannot prove that it always succeeds. However, experiments
that we carried out demonstrate its effectiveness. We were not
able to find a single example where the attack fails. This is
similar to the situation with many factoring algorithms, where
one cannot prove that they work; instead one gives strong
heuristic arguments that explain their running time. In our case,
the heuristic “assumption” we make is that the two shortest
vectors in an LLL reduced basis give rise to algebraically
independent polynomials. Our experiments confirm this as-
sumption. We note that a similar assumption is used in the work
of Bleichenbacher [1] and Jutla [7].

Our work raises two natural open problems. The first is to
make our attack rigorous. More importantly, our work is an
application of Coppersmith’s techniques to bivariate modular
polynomials. It is becoming increasingly important to rigor-
ously prove that these techniques can be applied to some bi-
variate polynomials.

The second open problem is to improve our bounds. A bound
of cannot be the final answer. It is too unnatural.
We believe the correct bound is . We hope our ap-
proach eventually will lead to a proof of this stronger bound.

To conclude, we note that Wiener suggested a defense against
the low private exponent attack based on the Chinese Remainder
Theorem (CRT). When , the idea is to use a private key
such that both and are
small. Such speed up RSA signature generation since RSA
signatures are often generated moduloand separately and
then combined using the CRT. Since , the value of

is likely to be large, namely, close to . Consequently,
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our low-exponent attack does not apply to such. It is an open
problem whether there is an efficient attack on such private keys.
The best known attack runs in time .

APPENDIX A
PRECISECALCULATION OF THE DETERMINANT

We give the exact expressions evaluating to the determinant
of the lattice described in Section IV. We know

The determinant of the entire lattice is and its dimen-
sion is .

To satisfy we must have

which leads to

For every the left hand side is minimized at .
Plugging this value in leads to

implying

As was shown in Section IV, when goes to infinity this values
converges to

For a particular value of we must take to be at
least

For example, when we must take leading to
a lattice of dimension . This explicit bound can be improved
using the techniques of Section V. In fact, the experiments de-
scribed in Section VIII show that a lattice of dimension is
sufficient for .

APPENDIX B
PROOF OFTHEOREM 5.1

This Appendix provides a proof of Theorem 5.1.
We use the following approach. First we introduce the notion

of diagonally dominantmatrices, and show that there is an easy
bound on the determinant of any lattice formed from a subset of
the rows of a diagonally dominant matrix . We then show that
for certain submatrices of geometrically progressive matrices

there is a unitary transformation overthat puts the submatrix
into a diagonally dominant form, giving the desired determinant
bounds. We then verify that these bounds yield the conclusion
of Theorem 5.1.

Let be an triangular matrix with rows .
We write the th component of as . We say that is
diagonally dominant to within a factor when
for all . When the factor is understood, we say
simply that is diagonally dominant.

Let be a subset of the row indices. We define to be
the matrix whose rows are . We say that an
arbitrary matrix is diagonally dominant when there
is an and diagonally dominant matrix such
that and . We say that a lattice is di-
agonally dominant when there is a basis for such
that the matrix with rows is diagonally dominant.
Diagonally dominant lattices have determinants that are easy to
bound, as shown in the following fact.

Fact B.1: Let be given and take with
. If is a lattice spanned by the rows of a

diagonally dominant matrix , then

Proof: Observe that since we have

Now let be an geometrically pro-
gressive matrix. Observe that if for every row the bound

for the column is less than the bound
for the entry on the diagonal, then by con-

ditions i) and ii) on geometrically progressive matrices we have
that is diagonally dominant to within a factor. The columns
of interest are those in which this bound does not hold; to wit,
we call a column index badwhen the following condition
holds:

or, equivalently, . It should be noted that
the “badness” of a column is a statement about theboundon the
entry in the column, which is a function of theparametersof the
geometrically progressive matrix, not of the entry itself. Indeed,
the actual entry of a bad column could be
zero, leading us to the following observation.

Remark B1: Let be a geometrically progressive matrix
and a subset of the rows. If for every bad
column of every row , then is diagonally
dominant to within a factor . This is because for each
that is not bad in the row , we have
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Remark B1 suggests that we should be looking for a subma-
trix whose entries are zero in bad columns. Although this
is unlikely for any submatrix of the matrix developed
in Section IV, what we shall see is that there is a unitary trans-
formation over that eliminates entries at bad columns in rows
of . Once the diagonal dominance of this transformed sub-
matrix has been established, Fact B.1 can then be employed to
bound the determinant of the corresponding lattice.

Our goal now is to show that special submatrices of geomet-
rically progressive matrices can be put into a diagonally domi-
nant form. Consider the following situation: suppose we take a
subset of the rows of a geometrically progressive matrix
and wish to bound the determinant of the lattice described by

. We wish to guarantee that there are “enough” rows in-
cluded in so that we may eliminate all nonzero entries at bad
columns in rows of . We prove this for certain natural sub-
sets in Lemma B.2. We then use this guarantee to show that
such an elimination procedure will be successful; namely, we
show that there is a unitary transformationover such that

is diagonally dominant. This is shown in Lemma B.3,
leading directly to a proof of Theorem 5.1.

Lemma B.2:Let be an geometrically
progressive matrix with parameters ,
let be a constant. Define

For all and , if column is bad in
row then .

Proof: We begin by assuming that is bad, so
and thus

(3)

Seeking contradiction, we now assume , that is,
. It follows that

Hence

(4)

Combining (3) and (4) yields

(5)

Note that and by the hypotheses of the theorem,
and we are guaranteed and since
is geometrically progressive. So

Furthermore, , so

contradicting (5). Hence, as desired.

Lemma B.3:Let be an geometrically
progressive matrix with parameters ,
let be a constant, define

and set . There is a unitary matrix over
such that is diagonally dominant to within a factor

.
Proof: We proceed by induction. There arerows in the

matrix , and we build matrices such that the last
rows of are diagonally dominant1 to within a factor

, and the first rows identical to those in .
The we seek is .

Clearly, trivially satisfies this condition. Now sup-
pose we have a unitary matrix over such that the last

rows of are diagonally dominant to within
a factor and the first rows are identical to those
of . We would like to find that satisfies this condition
for the last rows, and we do this by finding a unitary matrix
over such that satisfies this condition. Roughly
speaking, the purpose of is to “clean up” row of

; that is, it guarantees that times the last column
of row dominates all other columns of row
in .

Since is formed from rows of , we may choose a
pair such that row of is the th
row of . By Lemma B.2, for every bad column satisfying

and , the corresponding row is in . So there
are at most bad columns with nonzero entries in the row
(clearly, is not bad).

We build in stages by constructing elementary row oper-
ations and letting .
Each sets another bad column in the row to , so that
the th row of has nonzero
entries in at most bad columns. We show that each
increases every column of the row by at most a factor of .

Define

that is, is the th row of .
We denote the entry in the th column of as .
We maintain the following three invariants for :

i) for all
columns ;

ii) or implies ; and

iii) the number of bad columns with nonzero entries in
is at most .

These conditions are satisfied trivially for , since is
identical to row of the geometrically progressive matrix

. Now suppose that every column of satisfies
these three conditions. If there are no nonzero entries of
at bad columns, we are done, and may take .
Otherwise, let be the rightmost bad column such that

1To say that the lastr rows of aw � n matrix ~M are diagonally dominant
means simply that~M j is diagonally dominant.
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. Since , we know by the
inductive hypothesis that and . Since is
also bad, we know that . So we may pick a such
that row of is row of . Define to be the

elementary row operation that subtracts times row
from row . Observe for every column

So condition i) is met.
Now let be given with either or . Since

, we know by condition ii) of the inductive
hypothesis that and . So either or

, implying . Thus

satisfying condition ii).
We now claim that the number of bad columns with nonzero

entries in is at most . Clearly, , and
columns to the right of are unchanged from . Since

was chosen to be the rightmost nonzero bad column of
, this implies that no nonzero column in to the right of
is bad. But since this is theth elimination step, there are

at least bad columns to the right of satisfying
and . Thus the number of bad columns with nonzero

entries in is at most , satisfying condition iii).
Thus has a zero in every bad column, so

for all columns . Setting and
, we have that the lastrows of are diagonally

dominant to within a factor . Finally, taking
completes the result.

We are now ready to complete the proof of Theorem 5.1.

Proof of Theorem 5.1:By Lemma B.3 we have a
unitary matrix over such that is diagonally dom-
inant to within a factor . Since is unitary over , the
lattice induced by the rows of has the same de-
terminant as the lattice induced by the rows of , so by
Fact B.1 yielding the desired bound
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