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1.1.1 BACKGROUND
Cubic Pell RSA
• A new RSA variant introduced by Murru and Saettone
• Based on cubic Pell equation x3 + ry3 + r2z3 − 3rxyz = 1

• Use a novel group with a non-standard product ⊙ on tuple (⋆, ⋆)

Key Information

• Public/private keys are (N, e, r)/(d, p, q) with N = pq

• Ensure ed ≡ 1 (mod ϕ(N)) for ϕ(N) = (p2 + p+ 1)(q2 + q + 1)

• Key equation is ed− k(p2 + p+ 1)(q2 + q + 1) = 1 for an unknown k
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1.1.2 PUBLIC KEY CRYPTOSYSTEM
Key Generation

Select two prime numbers p, q and compute the modulus N = pq. Choose
an integer e (≈ Nβ) such that gcd(e, (p2+p+1)(q2+q+1)) = 1 and compute
d (≈ N δ) satisfying ed ≡ 1 (mod (p2 + p+ 1)(q2 + q + 1)).

Encryption

To encrypt two given plaintexts
m1 and m2 in ZN , one uses the
following encryption:

(c1, c2) ≡ (m1,m2)
⊙ e (mod N)

Decryption

To decrypt two given ciphertexts
c1 and c2 in ZN , one uses the fol-
lowing decryption:

(m?
1,m

?
2) ≡ (c1, c2)

⊙ d (mod N)
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1.1.3 PREVIOUS ATTACKS

ST Attack

Susilo and Toniena utilized the continued fraction-based method to show
that for a given RSA modulus N = pq with q < p < µq, if

δ <
1

4
− ε,

where ε is a small positive constant related solely to µ, then the private key
can be efficiently recovered.

aSusilo, W., Tonien, J.: A Wiener-type attack on an RSA-like cryptosystem constructed
from cubic Pell equations. Theor. Comput. Sci. 885, 125–130 (2021).
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1.1.4 PREVIOUS ATTACKS
NAAA Attack

Nitaj et al.a employed the continued fraction-based method to show that if

δ <
5

4
− 1

2
β for 3

2
< β <

5

2
,

then the RSA modulusN = pq can be efficiently factored. By employing the
lattice-based method, the bound can be improved to

δ <
7

3
− 2

3

√
3β + 1 for 1 < β <

15

4
.

aNitaj, A., Ariffin, M.R.B.K., Adenan, N.N.H., Abu, N.A.: Classical attacks on a variant of the
RSA cryptosystem. LATINCRYPT 2021 - LNCS, vol. 12912, pp. 151–167. Springer (2021).
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1.1.5 PREVIOUS ATTACKS
ZKY Attack

Zheng et al.a reformulated the key equation into amodular equation xh(y)+
c ≡ 0 (mod e), where h(y) is a polynomial of order 2with integer coefficients.
They employed the lattice-based method along with Kunihiro’s technique,
further refining the bound to

δ <


2−

√
β, 1 ≤ β <

9

4
,

5

4
− β

3
,

9

4
≤ β <

15

4
.

aZheng, M., Kunihiro, N., Yao, Y.: Cryptanalysis of the RSA variant based on cubic Pell
equation. Theor. Comput. Sci. 889, 135–144 (2021).
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1.1.6 PREVIOUS ATTACKS
NAALC Attack

Nitaj et al.a investigated attacks under small prime difference |p− q| = Nα

and introduced two distinct attacks. One uses the continued fraction-based
method, factoring the modulus N = pq if

δ <
7

4
− 1

2
β − α for 1

2
+ 2α < β <

7

2
− 2α.

Another one uses the lattice-based method, improving the attack bound to

δ <
5

3
+

4

3
α− 2

3

√
(4α− 1)(3β + 4α− 1) for β > 2α.

aNitaj, A., Ariffin, M.R.B.K., Adenan, N.N.H., Lau, T.S.C., Chen, J.: Security issues of novel
RSA variant. IEEE Access 10, 53788–53796 (2022).
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1.1.7 PREVIOUS ATTACKS
NAB Attack

Nassr et al.a proposed three new attacks based on the continued fraction-
based method in specific scenarios concerning prime factors p and q. They
showed that these attacks are effective if

δ ≤ 3

4
− α or δ ≤ 3

4
− ζ or δ <

1− η

2
,

where assuming |p− q| = Nα, |2q− p| = N ζ , and given an approximation p0
for p such that |p− p0| ≤ Nη .

aNassr, D.I., Anwar, M., Bahig, H.M.: Improving small private exponent attack on the
Murru-Saettone cryptosystem. Theor. Comput. Sci. 923, 222–234 (2022).
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1.1.8 PREVIOUS ATTACKS
FNP Attack

Feng et al.a used Kunihiro’s technique to solve the modular equation. They
proposed attacks under the condition that the most significant bits of p are
known. Specifically, if

δ <


2−

√
2βξ, 2ξ < β <

9

2
ξ,

2− 1

3
β − 3

2
ξ,

9

2
ξ ≤ β < 6− 9

2
ξ,

where |p−p0| = N ξ and p0 is an approximation of p, thenN can be factored.
aFeng, Y., Nitaj, A., Pan, Y.: Partial prime factor exposure attacks on some RSA variants.

Theoretical Computer Science 999, 114549 (2024).
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1.2.1 RESEARCH PROBLEM
Generalized Key Equation

Fromperspective ofmathematical cryptanalysis and theoretical interest, we
further examine the security by investigating the generalized key equation

eu− (p2 + p+ 1)(q2 + q + 1)v = w.

This equation can be rewritten into a modular form:

v(p+ q)2 + (N + 1)(p+ q)v + (N2 −N + 1)v + w ≡ 0 (mod e).

Suppose e = Nβ , u = N δ , and |w| = Nγ , we aim to derive a solving condition
with β, δ, γ for factorization of N = pq.
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1.2.2 OUR CONTRIBUTION

Generalized Lattice-Based Attack

Let N = pq be the product of two unknown prime numbers with q < p < 2q.
Suppose that e = Nβ satisfying the generalized key equation

eu− (p2 + p+ 1)(q2 + q + 1)v = w,

where u = N δ and |w| = Nγ . Then one can factor N in polynomial time if

δ <
7

3
− γ − 2

3

√
1 + 3β − 3γ,

provided that γ ≤ β − 1.
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2.1.1 LATTICE-BASED SOLVING STRATEGY
Lattice Concepts

The set of all integer linear combinations of linearly independent vectors.
• Dimension: dim(L) = ω

• Basis vectors: b⃗1, . . . , b⃗ω
• Basis matrix: B = (bij)ω×ω

• Determinant: det(L) = | det(B)|

L = Z⃗b1 + · · ·+ Z⃗bω =

{
ω∑

i=1

zi⃗bi : zi ∈ Z, b⃗i ∈ Rω

}
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2.1.2 LATTICE-BASED SOLVING STRATEGY
Lattice Reduction

• Lenstra, Lenstra, and Lovász proposed the famous LLL algorithm
• Output approximately shortest reduced vectors in polynomial time
• Lattice-based solving strategy is applied in public key cryptanalysis

Random Basis (1, 3), (2, 4) Reduced Basis (1, 1), (−1, 1)

LLL Algorithm
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2.1.3 LATTICE-BASED SOLVING STRATEGY
Find Small Modular Roots Using Lattice Reduction

1. Construct shift polynomials with common root modulo E = em

2. Transform their coefficient vectors into a lattice basis matrix B
3. Calculate short reduced vectors from ω-dimensional lattice L(B)

4. Transform output reduced vectors into integer equations system
5. Extract desired root over the integers using some simple methods

Asymptotic Solving Condition (LLL Lemma & HG Lemma)

2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 < E/

√
ω =⇒ det(L) < Eω =⇒ | det(B)| < Eω

Mengce Zheng Generalized Cryptanalysis of Cubic Pell RSA Generalized Cryptanalysis Lattice Page 14 / 25



2.1.4 TARGET EQUATION
Trivariate Modular Equation

Using generalized key equation eu− (p2 + p+ 1)(q2 + q + 1)v = w, we have

v(p+ q)2 + (N + 1)(p+ q)v + (N2 −N + 1)v + w ≡ 0 (mod e).

Consider the following trivariate polynomial

f(x, y, z) = xy2 + axy + bx+ z,

where a = N + 1 and b = N2 −N + 1. Thus, (x′, y′, z′) = (v, p+ q, w) is the
modular root. We set the upper bounds to be

X = 2Nβ+δ−2, Y = 3N
1
2 , Z = Nγ .

Mengce Zheng Generalized Cryptanalysis of Cubic Pell RSA Generalized Cryptanalysis Lattice Page 15 / 25



2.2.1 DETAILED ATTACK (1)

Monomial Sets

Letm be a positive integer and t be a non-negative integer to be optimized
later. For 0 ≤ k ≤ m, we define the following monomial set

Mk =
∪

0≤j≤2+t

{
xi1yi2+jzi3 : xi1yi2zi3 is a monomial of f(x, y, z)m

and xi1yi2zi3

(xy2)k
is a monomial of f(x, y, z)m−k

}
.

We can obtain an accurate description of i1, i2, i3 for each xi1yi2zi3 ∈ Mk:

i1 = k, . . . ,m, i2 = 2k, . . . , 2i1 + 2 + t, i3 = m− i1.

Mengce Zheng Generalized Cryptanalysis of Cubic Pell RSA Generalized Cryptanalysis Detailed Attack Page 16 / 25



2.2.2 DETAILED ATTACK (2)

Shift Polynomials

We define the following shift polynomials for xi1yi2zi3 ∈ Mk \Mk+1:

gk,i1,i2,i3(x, y, z) =
xi1yi2zi3

(xy2)k
f(x, y, z)kem−k.

Furthermore, shift polynomials can be divided into two polynomial sets:

Gk,i1,i2,i3(x, y, z) = xi1−kyi2−2kzi3f(x, y, z)kem−k,

k = 0, . . .m, i1 = k, . . . ,m, i2 = 2k, 2k + 1, i3 = m− i1,

Hk,i1,i2,i3(x, y, z) = yi2−2kzi3f(x, y, z)kem−k,

k = 0, . . .m, i1 = k, i2 = 2k + 2, . . . , 2i1 + 2 + t, i3 = m− i1.
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2.2.3 DETAILED ATTACK (3)

Coefficient Vectors

Coefficient vectors of Gk,i1,i2,i3(xX, yY, zZ) and Hk,i1,i2,i3(xX, yY, zZ), with
X , Y , and Z denoting the upper bounds. In terms of row order, prece-
dence is given to any Gk,i1,i2,i3(xX, yY, zZ) over any Hk,i1,i2,i3(xX, yY, zZ).
The polynomial order ≺p is established as (k, i1, i2, i3) ≺p (k′, i′1, i

′
2, i

′
3) if

• k < k′; or
• k = k′ and i1 < i′1; or
• k = k′, i1 = i′1 and i2 < i′2; or
• k = k′, i1 = i′1, i2 = i′2 and i3 < i′3.

The monomial order ≺m is defined as xi1yi2zi3 ≺m xi
′
1yi

′
2zi

′
3 in a similar way.
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2.2.4 DETAILED ATTACK (4)

Integer Lattice

Regarding derived coefficient vectors as b⃗i for i = 1, . . . , ω and construct

L =

{
ω∑

i=1

zi⃗bi : zi ∈ Z

}
.

The lattice dimension ω is calculated as

ω =

m∑
k=0

m∑
i1=k

2k+1∑
i2=2k

m−i1∑
i3=m−i1

1 +

m∑
k=0

k∑
i1=k

2i1+2+t∑
i2=2k+2

m−i1∑
i3=m−i1

1 = (m+ 1)(m+ t+ 3).
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2.2.5 DETAILED ATTACK (5)

Toy Example

A toy example of the lattice basis matrix for m = 2 and t = 0 is shown.

Mengce Zheng Generalized Cryptanalysis of Cubic Pell RSA Generalized Cryptanalysis Detailed Attack Page 20 / 25



2.2.6 DETAILED ATTACK (6)

Lattice Determinant

A lower triangular basis matrix only requires multiplication of the diagonal
terms for computing the determinant:

det(L) = eneXnXY nY ZnZ .

Letting t = τm with a real τ ≥ 0 for simplicity, we obtain ω = (τ + 1)m2 +
o(m2) and

ne =
1

6
(3τ + 4)m3 + o(m3), nX =

1

6
(3τ + 4)m3 + o(m3),

nY =
1

6

(
3τ2 + 6τ + 4

)
m3 + o(m3), nZ =

1

6
(3τ + 2)m3 + o(m3).
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2.2.7 DETAILED ATTACK (7)

Attack Bound

The solving condition det(L) < Eω with E = em yields

Nβne+(β+δ−2)nX+ 1
2
nY +γnZ < Nβmω.

Simplify the exponents over N and obtain

δ <
−3τ2 + (6− 6γ)τ + 12− 4β − 4γ

6τ + 8
.

By setting τ0 = (2
√
1 + 3β − 3γ − 4)/3, it further leads to

δ <
7

3
− γ − 2

3

√
1 + 3β − 3γ.
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2.3.1 EXPERIMENTAL RESULTS
Experiment Details

• Performed on a laptop computer running Ubuntu 22.04
• Conducted using SageMath mathematics software system
• Chose random parameters for generating a numerical instance
• Provided source code at https://github.com/MengceZheng/GCPRSA
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2.3.2 EXPERIMENTAL RESULTS
Numerical Example

Try γ = 0.5 and the attack bound then becomes δ < 0.352. We set

X = 2Nβ+δ−2 = 2
⌊
N0.165

⌋
= 1253639937596726444032,

Y = 3N
1
2 = 3

⌊
N0.5

⌋
= 2225600117985225440615720320616338202961035108909070402770173952,

Z = Nγ =
⌊
N0.5

⌋
= 741866705995075177319857551265923530230445717892253043755319296.

Usem = 4 and t = 1 to construct L with dimension ω = 40 and recover y′ =

1536354991455741707742478245964252188726053897292803038487782580.
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3. CONCLUSION
Improvements

• Provide new results using generalized key equation of cubic Pell RSA
• Achieve advanced attack effect even if the private key d is much larger

Limitation
• Our proposed attack does not reach the best existing attack results

Future Work
• Explore further improvements using better lattice construction
• Extend generalized attack in cases like key exposure or multiple keys
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