GENERALIZED CRYPTANALYSIS OF CUBIC PELL RSA

Mengce Zheng Zhejiang Wanli University joint work with Hao Kang

Inscrypt 2024, Kunming, China

December 15, 2024

OUTLINE

1. Introduction

1.1 Background

1.2 Our Contribution

- 2. Generalized Cryptanalysis
 - 2.1 Lattice
 - 2.2 Detailed Attack
 - 2.3 Validating Experiments
- 3. Conclusion

Cubic Pell RSA

- A new RSA variant introduced by Murru and Saettone
- Based on cubic Pell equation $x^3 + ry^3 + r^2z^3 3rxyz = 1$
- Use a novel group with a non-standard product \odot on tuple (\star,\star)

Key Information

- Public/private keys are (N, e, r)/(d, p, q) with N = pq
- Ensure $ed \equiv 1 \pmod{\phi(N)}$ for $\phi(N) = (p^2 + p + 1)(q^2 + q + 1)$
- Key equation is $ed k(p^2 + p + 1)(q^2 + q + 1) = 1$ for an unknown k

1.1.2 PUBLIC KEY CRYPTOSYSTEM

Key Generation

Select two prime numbers p, q and compute the modulus N = pq. Choose an integer $e (\approx N^{\beta})$ such that $gcd(e, (p^2+p+1)(q^2+q+1)) = 1$ and compute $d (\approx N^{\delta})$ satisfying $ed \equiv 1 \pmod{(p^2+p+1)(q^2+q+1)}$.

Encryption

To encrypt two given plaintexts m_1 and m_2 in \mathbb{Z}_N , one uses the following encryption:

$$(c_1, c_2) \equiv (m_1, m_2)^{\odot e} \pmod{N}$$

Decryption

To decrypt two given ciphertexts c_1 and c_2 in \mathbb{Z}_N , one uses the following decryption:

$$(m_1^?, m_2^?) \equiv (c_1, c_2)^{\odot d} \pmod{N}$$

1.1.3 PREVIOUS ATTACKS

ST Attack

Susilo and Tonien^a utilized the continued fraction-based method to show that for a given RSA modulus N = pq with q , if

$$\delta < \frac{1}{4} - \varepsilon$$

where ε is a small positive constant related solely to μ , then the private key can be efficiently recovered.

^aSusilo, W., Tonien, J.: A Wiener-type attack on an RSA-like cryptosystem constructed from cubic Pell equations. Theor. Comput. Sci. 885, 125–130 (2021).

1.1.4 PREVIOUS ATTACKS

NAAA Attack

Nitaj et al.^a employed the continued fraction-based method to show that if

$$\delta < \frac{5}{4} - \frac{1}{2}\beta \quad \text{for} \quad \frac{3}{2} < \beta < \frac{5}{2},$$

then the RSA modulus N = pq can be efficiently factored. By employing the lattice-based method, the bound can be improved to

$$\delta < \frac{7}{3} - \frac{2}{3}\sqrt{3\beta + 1} \quad \text{for} \quad 1 < \beta < \frac{15}{4}.$$

^aNitaj, A., Ariffin, M.R.B.K., Adenan, N.N.H., Abu, N.A.: Classical attacks on a variant of the RSA cryptosystem. LATINCRYPT 2021 - LNCS, vol. 12912, pp. 151–167. Springer (2021).

ZKY Attack

Zheng et al.^{*a*} reformulated the key equation into a modular equation $xh(y) + c \equiv 0 \pmod{e}$, where h(y) is a polynomial of order 2 with integer coefficients. They employed the lattice-based method along with Kunihiro's technique, further refining the bound to

$$0 < \begin{cases} 2 - \sqrt{\beta}, & 1 \le \beta < \frac{9}{4}, \\ \frac{5}{4} - \frac{\beta}{3}, & \frac{9}{4} \le \beta < \frac{15}{4}. \end{cases}$$

^aZheng, M., Kunihiro, N., Yao, Y.: Cryptanalysis of the RSA variant based on cubic Pell equation. Theor. Comput. Sci. 889, 135–144 (2021).

1.1.6 PREVIOUS ATTACKS

NAALC Attack

Nitaj et al.^a investigated attacks under small prime difference $|p - q| = N^{\alpha}$ and introduced two distinct attacks. One uses the continued fraction-based method, factoring the modulus N = pq if

$$\delta < rac{7}{4} - rac{1}{2}eta - lpha \quad ext{for} \quad rac{1}{2} + 2lpha < eta < rac{7}{2} - 2lpha.$$

Another one uses the lattice-based method, improving the attack bound to

$$\delta < \frac{5}{3} + \frac{4}{3}\alpha - \frac{2}{3}\sqrt{(4\alpha-1)(3\beta+4\alpha-1)} \quad \text{for} \quad \beta > 2\alpha.$$

^aNitaj, A., Ariffin, M.R.B.K., Adenan, N.N.H., Lau, T.S.C., Chen, J.: Security issues of novel RSA variant. IEEE Access 10, 53788–53796 (2022).

1.1.7 PREVIOUS ATTACKS

NAB Attack

Nassr et al.^{*a*} proposed three new attacks based on the continued fractionbased method in specific scenarios concerning prime factors p and q. They showed that these attacks are effective if

$$\delta \leq \frac{3}{4} - \alpha \quad \text{or} \quad \delta \leq \frac{3}{4} - \zeta \quad \text{or} \quad \delta < \frac{1-\eta}{2},$$

where assuming $|p-q| = N^{\alpha}$, $|2q-p| = N^{\zeta}$, and given an approximation p_0 for p such that $|p-p_0| \leq N^{\eta}$.

^{*a*}Nassr, D.I., Anwar, M., Bahig, H.M.: Improving small private exponent attack on the Murru-Saettone cryptosystem. Theor. Comput. Sci. 923, 222–234 (2022).

1.1.8 PREVIOUS ATTACKS

FNP Attack

Feng et al.^a used Kunihiro's technique to solve the modular equation. They proposed attacks under the condition that the most significant bits of p are known. Specifically, if

$$\delta < \begin{cases} 2 - \sqrt{2\beta\xi}, & 2\xi < \beta < \frac{9}{2}\xi, \\ 2 - \frac{1}{3}\beta - \frac{3}{2}\xi, & \frac{9}{2}\xi \le \beta < 6 - \frac{9}{2}\xi, \end{cases}$$

where $|p-p_0| = N^{\xi}$ and p_0 is an approximation of p, then N can be factored.

^{*a*}Feng, Y., Nitaj, A., Pan, Y.: Partial prime factor exposure attacks on some RSA variants. Theoretical Computer Science 999, 114549 (2024).

Generalized Key Equation

From perspective of mathematical cryptanalysis and theoretical interest, we further examine the security by investigating the generalized key equation

 $eu - (p^2 + p + 1)(q^2 + q + 1)v = w.$

This equation can be rewritten into a modular form:

$$v(p+q)^2 + (N+1)(p+q)v + (N^2 - N + 1)v + w \equiv 0 \pmod{e}.$$

Suppose $e = N^{\beta}$, $u = N^{\delta}$, and $|w| = N^{\gamma}$, we aim to derive a solving condition with β , δ , γ for factorization of N = pq.

1.2.² **OUR CONTRIBUTION**

Generalized Lattice-Based Attack

Let N = pq be the product of two unknown prime numbers with q . $Suppose that <math>e = N^{\beta}$ satisfying the generalized key equation

$$eu - (p^2 + p + 1)(q^2 + q + 1)v = w,$$

where $u=N^{\delta}$ and $|w|=N^{\gamma}.$ Then one can factor N in polynomial time if

$$\delta < \frac{7}{3} - \gamma - \frac{2}{3}\sqrt{1 + 3\beta - 3\gamma},$$

provided that $\gamma \leq \beta - 1$.

2.1.1 LATTICE-BASED SOLVING STRATEGY

Lattice Concepts

The set of all integer linear combinations of linearly independent vectors.

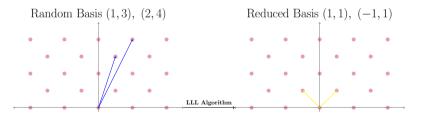
- Dimension: $\dim(\mathcal{L}) = \omega$
- Basis vectors: $\vec{b}_1, \ldots, \vec{b}_{\omega}$
- Basis matrix: $B = (b_{ij})_{\omega \times \omega}$
- Determinant: $det(\mathcal{L}) = |det(B)|$

$$\mathcal{L} = \mathbb{Z}\vec{b}_1 + \dots + \mathbb{Z}\vec{b}_\omega = \left\{\sum_{i=1}^{\omega} z_i\vec{b}_i : z_i \in \mathbb{Z}, \ \vec{b}_i \in \mathbb{R}^{\omega}\right\}$$

2.1.2 LATTICE-BASED SOLVING STRATEGY

Lattice Reduction

- Lenstra, Lenstra, and Lovász proposed the famous LLL algorithm
- Output approximately shortest reduced vectors in polynomial time
- Lattice-based solving strategy is applied in public key cryptanalysis



2.1.3 LATTICE-BASED SOLVING STRATEGY

Find Small Modular Roots Using Lattice Reduction

- 1. Construct shift polynomials with common root modulo $E=e^m$
- 2. Transform their coefficient vectors into a lattice basis matrix \boldsymbol{B}
- 3. Calculate short reduced vectors from ω -dimensional lattice $\mathcal{L}(B)$
- 4. Transform output reduced vectors into integer equations system
- 5. Extract desired root over the integers using some simple methods

Asymptotic Solving Condition (LLL Lemma & HG Lemma)

$$2^{\frac{\omega(\omega-1)}{4(\omega-2)}} \det(\mathcal{L})^{\frac{1}{\omega-2}} < E/\sqrt{\omega} \implies \det(\mathcal{L}) < E^{\omega} \implies |\det(B)| < E^{\omega}$$

2.1.⁴ **TARGET EQUATION**

Trivariate Modular Equation

Using generalized key equation $eu - (p^2 + p + 1)(q^2 + q + 1)v = w$, we have

$$v(p+q)^2 + (N+1)(p+q)v + (N^2 - N + 1)v + w \equiv 0 \pmod{e}.$$

Consider the following trivariate polynomial

$$f(x, y, z) = xy^2 + axy + bx + z,$$

where a = N + 1 and $b = N^2 - N + 1$. Thus, (x', y', z') = (v, p + q, w) is the modular root. We set the upper bounds to be

$$X = 2N^{\beta+\delta-2}, \ Y = 3N^{\frac{1}{2}}, \ Z = N^{\gamma}.$$

2.2.1 DETAILED ATTACK

Monomial Sets

Let m be a positive integer and t be a non-negative integer to be optimized later. For $0\leq k\leq m$, we define the following monomial set

$$\begin{split} M_k &= \bigcup_{0 \le j \le 2+t} \left\{ x^{i_1} y^{i_2+j} z^{i_3} : x^{i_1} y^{i_2} z^{i_3} \text{ is a monomial of } f(x,y,z)^m \\ & \text{ and } \frac{x^{i_1} y^{i_2} z^{i_3}}{(xy^2)^k} \text{ is a monomial of } f(x,y,z)^{m-k} \right\} \end{split}$$

We can obtain an accurate description of i_1, i_2, i_3 for each $x^{i_1}y^{i_2}z^{i_3} \in M_k$:

$$i_1 = k, \ldots, m, \ i_2 = 2k, \ldots, 2i_1 + 2 + t, \ i_3 = m - i_1.$$

2.2. DETAILED ATTACK

Shift Polynomials

We define the following shift polynomials for $x^{i_1}y^{i_2}z^{i_3}\in M_k\setminus M_{k+1}$:

$$g_{k,i_1,i_2,i_3}(x,y,z) = \frac{x^{i_1}y^{i_2}z^{i_3}}{(xy^2)^k}f(x,y,z)^k e^{m-k}.$$

Furthermore, shift polynomials can be divided into two polynomial sets:

$$G_{k,i_1,i_2,i_3}(x,y,z) = x^{i_1-k}y^{i_2-2k}z^{i_3}f(x,y,z)^k e^{m-k},$$

$$k = 0, \dots m, \ i_1 = k, \dots, m, \ i_2 = 2k, 2k+1, \ i_3 = m-i_1,$$

$$H_{k,i_1,i_2,i_3}(x,y,z) = y^{i_2-2k}z^{i_3}f(x,y,z)^k e^{m-k},$$

$$k = 0, \dots m, \ i_1 = k, \ i_2 = 2k+2, \dots, 2i_1+2+t, \ i_3 = m-i_1.$$

(2)

Coefficient Vectors

Coefficient vectors of $G_{k,i_1,i_2,i_3}(xX, yY, zZ)$ and $H_{k,i_1,i_2,i_3}(xX, yY, zZ)$, with X, Y, and Z denoting the upper bounds. In terms of row order, precedence is given to any $G_{k,i_1,i_2,i_3}(xX, yY, zZ)$ over any $H_{k,i_1,i_2,i_3}(xX, yY, zZ)$. The polynomial order \prec_p is established as $(k, i_1, i_2, i_3) \prec_p (k', i'_1, i'_2, i'_3)$ if

- k < k'; or
- k = k' and $i_1 < i'_1$; or
- $k = k', \; i_1 = i'_1 \; {
 m and} \; i_2 < i'_2$; or
- $k = k', \ i_1 = i'_1, \ i_2 = i'_2 \text{ and } i_3 < i'_3.$

The monomial order \prec_m is defined as $x^{i_1}y^{i_2}z^{i_3} \prec_m x^{i'_1}y^{i'_2}z^{i'_3}$ in a similar way.

(3)

Integer Lattice

Regarding derived coefficient vectors as $ec{b}_i$ for $i=1,\ldots,\omega$ and construct

$$\mathcal{L} = \left\{ \sum_{i=1}^{\omega} z_i \vec{b}_i : z_i \in \mathbb{Z} \right\}.$$

The lattice dimension $\boldsymbol{\omega}$ is calculated as

$$\omega = \sum_{k=0}^{m} \sum_{i_1=k}^{m} \sum_{i_2=2k}^{2k+1} \sum_{i_3=m-i_1}^{m-i_1} 1 + \sum_{k=0}^{m} \sum_{i_1=k}^{k} \sum_{i_2=2k+2}^{2i_1+2+t} \sum_{i_3=m-i_1}^{m-i_1} 1 = (m+1)(m+t+3).$$

(4)

2.2.5 **DETAILED ATTACK**

Toy Example

A toy example of the lattice basis matrix for m = 2 and t = 0 is shown.

	z^2	yz^2	xz	xyz	x^2	x^2y	xy^2z	xy^3z	x^2y^2	x^2y^3	x^2y^4	x^2y^5	$y^2 z^2$	xy^4z	x^2y
$G_{[0,0,0,2]}$	$Z^2 e^i$	1													
$G_{[0,0,1,2]}$		YZ^2e^2													
$G_{[0,1,0,1]}$			XZe^2												
$G_{[0,1,1,1]}$				$XYZe^2$											
$G_{[0,2,0,0]}$					$X^2 e^2$										
$3_{[0,2,1,0]}$						X^2Ye^2									
$\mathcal{I}_{[1,1,2,1]}$			-				XY^2Ze								
$T_{[1,1,3,1]}$								$XY^{3}Ze$							
$\tilde{f}_{[1,2,2,0]}$			-		-	-			X^2Y^2e						
$G_{[1,2,3,0]}$				-						X^2Y^3e					
$G_{[2,2,4,0]}$			-		-	-	-		-	-	X^2Y^4				
$G_{[2,2,5,0]}$		-						-	-			X^2Y^5			
$H_{[0,0,2,2]}$													Y^2Z^2e	2	
$H_{[1,1,4,1]}$							-	-					-	XY^4Z	e
H _[2,2,6,0]							_	_	_						X^2

Mengce Zheng

(5)

Lattice Determinant

A lower triangular basis matrix only requires multiplication of the diagonal terms for computing the determinant:

 $\det(\mathcal{L}) = e^{n_e} X^{n_X} Y^{n_Y} Z^{n_Z}.$

Letting $t=\tau m$ with a real $\tau\geq 0$ for simplicity, we obtain $\omega=(\tau+1)m^2+o(m^2)$ and

$$n_e = \frac{1}{6}(3\tau + 4)m^3 + o(m^3), \ n_X = \frac{1}{6}(3\tau + 4)m^3 + o(m^3),$$

$$n_Y = \frac{1}{6}(3\tau^2 + 6\tau + 4)m^3 + o(m^3), \ n_Z = \frac{1}{6}(3\tau + 2)m^3 + o(m^3).$$

2.2.7 DETAILED ATTACK

Attack Bound

The solving condition $\det(\mathcal{L}) < E^\omega$ with $E = e^m$ yields

$$N^{\beta n_e + (\beta + \delta - 2)n_X + \frac{1}{2}n_Y + \gamma n_Z} < N^{\beta m \omega}.$$

Simplify the exponents over \boldsymbol{N} and obtain

$$\delta < \frac{-3\tau^2 + (6 - 6\gamma)\tau + 12 - 4\beta - 4\gamma}{6\tau + 8}$$

By setting $au_0 = (2\sqrt{1+3\beta-3\gamma}-4)/3$, it further leads to

$$\delta < \frac{7}{3} - \gamma - \frac{2}{3}\sqrt{1 + 3\beta - 3\gamma}.$$

2.3.1 EXPERIMENTAL RESULTS

Experiment Details

- Performed on a laptop computer running Ubuntu 22.04
- Conducted using SageMath mathematics software system
- Chose random parameters for generating a numerical instance
- Provided source code at https://github.com/MengceZheng/GCPRSA

Input e: 10578003884146132696993930345795908212610088212443443116131322083334835220854572592930841652745184949911092016662030067 52031456045032171612863063434022522609550692892561154763861484988711873034869148741612190479043963664788377209

Input g: 0.5

Input m: 4

Input t: 1

Found primes:

 $\mathsf{p} \; = \; 967502495361032247552444598347042412041475154993790090306919213$

q = 568852496094709460190033647617209776684578742299012948180863367

The attack costs 0.832 seconds...

Input given parameters of GCPRSA attack instance as follows:

Input N: 55036620946398325422485189815192043868757214175712155228727025727043796796595708168357793703727607350605192450111339626 0170171

2.3.² **EXPERIMENTAL RESULTS**

Numerical Example

Try $\gamma=0.5$ and the attack bound then becomes $\delta<0.352.$ We set

$$X = 2N^{\beta + \delta - 2} = 2\left\lfloor N^{0.165} \right\rfloor = 1253639937596726444032,$$

$$Y = 3N^{\frac{1}{2}} = 3\left\lfloor N^{0.5} \right\rfloor$$

= 2225600117985225440615720320616338202961035108909070402770173952, $Z = N^{\gamma} = \left\lfloor N^{0.5} \right\rfloor$

= 741866705995075177319857551265923530230445717892253043755319296.

Use m = 4 and t = 1 to construct \mathcal{L} with dimension $\omega = 40$ and recover y' =

1536354991455741707742478245964252188726053897292803038487782580.

Improvements

- Provide new results using generalized key equation of cubic Pell RSA
- Achieve advanced attack effect even if the private key d is much larger

Limitation

• Our proposed attack does not reach the best existing attack results

Future Work

- Explore further improvements using better lattice construction
- Extend generalized attack in cases like key exposure or multiple keys

Mengce Zheng

Inscrypt 2024, Kunming, China, December 15, 2024

mengce.zheng@gmail.com