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1. INTRODUCTION
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1.1 INITIAL RESEARCH
At EUROCRYPT 1996, Coppersmith proposed two lattice-based methods for find-
ing small roots of polynomial equations, one method for polynomial equations
over the integersa and one for modular polynomial equationsb.

Example: Solve f(x) ≡ 0 mod N

• Find all roots smaller than a certain bound X in polynomial time
• Bound X is generally of exponential size in the bit-size of modulus
• The use of LLL reduction algorithm is sufficient (no need for SVP)
• Bridges modular polynomial equations and integer solutions

aFinding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known
bFinding a Small Root of a Univariate Modular Equation
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1.2 CRYPTANALYSIS APPLICATIONS
The prominent cryptanalysis applications of Coppersmith’s techniques include
small private key attacks on RSA and its variants.

Some Known Results

• d < N0.292 for standard RSAa with d ≡ e−1 mod φ(N)

• dp, dq < N0.122 for CRT-RSAb with dp = d mod p− 1 and dq = d mod q− 1

• d < N1−
√

1/r for Multi-Prime RSAc with N = p1 · · · pr, r ≥ 3

• d < N
2−

√
2

r+1 for Takagi’s (Prime Power) RSA variantd with N = prq, r ≥ 2

aCryptanalysis of RSA with Private Key d Less than N0.292

bSmall CRT-exponent RSA revisited
cGeneral Bounds for Small Inverse Problems and Its Applications to Multi-Prime RSA
dSmall Secret Key Attack on a Variant of RSA Due to Takagi
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1.3 LATTICE-BASED RSA CRYPTANALYSIS
The initial stage (1996–2006) has a gradual growth with few publications and
the development stage (2007–present) reveals an increasing interesta.

aLattice-Based Cryptanalysis of RSA-Type Cryptosystems: A Bibliometric Analysis
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2. THEORETICAL FOUNDATIONS
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2.1.1 COPPERSMITH’S IDEA
Given a polynomial f(x) of degree δ over the ring ZN for some integer N of
unknown factorization, one aims to find all roots of f(x) in a certain interval.

Idea Description

One tries to construct a polynomial g(x) of usually larger degree from f(x)
such that every small modular root x0 of f , i.e. f(x0) ≡ 0 mod N with |x0| <
X , is also a root of g over Z.

f(x0) ≡ 0 mod N −→ g(x0) = 0

It reduces modular univariate root finding to integer univariate root finding, for
which there exist standard methods.
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2.1.2 FURTHER ANALYSIS (1)

Fix m ∈ Z and construct g as an integer linear combination of multiples of

hi,j = xjN ifm−i(x).

Notice that every root x0 of f satisfies

hi,j(x0) ≡ 0 mod Nm

Hence if g is an integer linear combination of the hi,j ’s then one shall have

g(x0) ≡ 0 mod Nm.

The core issue is to calculate the corresponding coefficients of g.
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2.1.3 FURTHER ANALYSIS (2)

Identify the polynomials hi,j(x) with their coefficient vectors. The integer linear
combinations of these vectors form an integer lattice Λ. The small vectors in Λ
correspond to possible linear combinations g(x) with small coefficients.

Key Observation

If g(x) has small coefficients, and is evaluated at small points x0 with |x0| ≤
X , then the result must also be (somewhat) small. Assume that g(x0) is in
absolute value smaller than Nm for all |x0| ≤ X :

g(x0) ≡ 0 mod Nm and |g(x0)| ≤ |g(X)| < Nm.

This implies that g(x) has the desired roots over the integers!
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2.1.4 FURTHER ANALYSIS (3)

If g(x) has sufficiently small coefficients, |g(x0)| < Nm should automatically
be fulfilled. An important lemma makes this intuition precise, which is usually
contributed to Howgrave-Grahama.

HG Lemma

Let g(x) be a univariate polynomial with nmonomials. Letm, X be positive
integers. Suppose that
Property 1. g(x0) ≡ 0 mod Nm, |x0| ≤ X , and
Property 2. ∥g(xX)∥ < Nm/

√
n.

Then g(x0) = 0 holds over the integers.

aFinding Small Roots of Univariate Modular Equations Revisited
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2.1.5 FURTHER ANALYSIS (4)

Suppose g(x) =
∑n

i=0 cix
i is a given univariate polynomial and its coefficient

vector is (c0, c1, . . . , cn). Then scaled polynomial g(xX) has coefficient vector
(c0, c1X, . . . , cnX

n), and its Euclidean norm is denoted by ∥g(xX)∥.

Proof Sketch

Property 2 implies

|g (x0)| =
∣∣∣∑

i

cix
i
0

∣∣∣ ≤ ∑
i

∣∣cixi0∣∣ ≤ ∑
i

|ci|Xi ≤
√
n∥g(xX)∥ < Nm.

Property 1 indicates that g(x0) is a multiple of Nm, and therefore g(x0) = 0.

The goal is to determine g(x) with its coefficients using lattice reduction.
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2.1.6 LATTICE
A Lattice Λ is a discrete additive subgroup of Rn as well as the set of all integer
linear combinations of linearly independent vectors.

Λ = Z⃗b1 + · · ·+ Z⃗bn =

{
n∑

i=1

zi⃗bi : zi ∈ Z, b⃗i ∈ Rn

}

Basic Concepts

• Full-rank: dim(Λ) = n

• Basis vectors: b⃗1, . . . , b⃗n
• Basis matrix: B = ((⃗bi)j)n×n

• Lattice determinant: det(Λ) = | det(B)|
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2.1.7 LATTICE REDUCTION (1)
Lenstra-Lenstra-Lovász reduction algorithma outputs approximately shortest
vectors. Lattice-based cryptanalysis using Coppersmith’s techniques is widely
applied to public key cryptosystems.

Random Basis (1, 3), (2, 4) Reduced Basis (1, 1), (−1, 1)

LLL Algorithm

The LLL-algorithm runs in polynomial time regarding its input size.
aFactoring Polynomials With Rational Coefficients
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2.1.8 LATTICE REDUCTION (2)

Let Λ be the lattice spanned by the coefficient vectors. The LLL theorem relates
the length of a shortest vector in reduced basis of Λ to det(Λ).

LLL Theorem

Let Λ be a lattice spanned by b⃗1, . . . , b⃗n. The LLL-algorithm outputs a lattice
vector v⃗ ∈ Λ satisfying

∥v⃗∥ ≤ 2
n−1
4 det(Λ)

1
n

in time O(n6 log3Bmax) and Bmax := maxi,j |(⃗bi)j | is the largest basis entry.

A faster LLL-varianta runs in time O(n4+ϵ log1+ϵBmax) for any constant ϵ > 0.
aFaster LLL-Type Reduction of Lattice Bases
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2.1.9 LATTICE REDUCTION (3)

A vector v⃗ in a Coppersmith-type lattice relates to a certain polynomial g(x), for
which it requires to satisfy HG Lemma. When LLL-algorithm outputs a vector v⃗
is short enough and Property 2 have a link.

Key Link

The terms concerning n, 2n−1
4 , √n can be omitted for sufficiently large N :

∥v⃗∥ ≤ 2
n−1
4 det(Λ)

1
n < Nm/

√
n −→ det(Λ) < Nmn.

This simplified inequality is the so-called enabling condition.

Try to construct hi,js’ coefficient vectors with det(Λ) as small as possible.
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2.2.1 UNIVARIATE POLYNOMIAL CASE
Ready to formulate Coppersmith-type theorem for univariate polynomials and
a full proof can be found in May’s worka.

Theorem (Univariate)

LetN be an integer of unknown factorization. Let f(x) be a univariatemonic
polynomial of constant degree δ. Then one can find all solutions x0 of the
equation

f(x) ≡ 0 mod N with |x0| < N
1
δ

in time O(log6+ϵN) for any ϵ > 0.

aUsing LLL-Reduction for Solving RSA and Factorization Problems
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2.2.2 UNIVARIATE POLYNOMIAL CASE
Choose m ≈ logN/δ and define the collection of polynomials as

hi,j(x) = xjN if(x)m−i for 0 ≤ i < m, 0 ≤ j < δ.

Proof Sketch

The coefficient vectors of hi,j(xX) form an n = δm ≈ logN-dimensional
lattice basis B with det(Λ) = det(B) ≈ N δm2/2Xn2/2.

N
δm2

2 X
n2

2 = N
δm2

2 X
δ2m2

2 < Nmn = N δm2 −→ X < N
1
δ .

It works in an n ≈ logN-dimensional lattice with largest entries of bit-size
logBmax = O(m logN) = O(log2N). The runtime is O(log6+ϵN).
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2.2.3 EXTENSION: LARGER BOUND
Any small root bound X can be be extended to cX for some real number c at
the expense of an additional run time factor of c.

Theorem (Univariate with Larger Bound)

Let N be an integer of unknown factorization and c ≥ 1. Let f(x) be a
univariate monic polynomial of constant degree δ. Then one can find all
solutions x0 of the equation

f(x) ≡ 0 mod N with |x0| < cN
1
δ

in time O(c log6+ϵN) for any ϵ > 0.

One can split the interval [−cN
1
δ , cN

1
δ ] in c sub-intervals of size each 2N

1
δ .
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2.2.4 EXTENSION: UNKNOWN DIVISOR
One can extend Coppersmith’s method to find roots of f(x) modulo b, where
b ≥ Nβ is an unknown divisor of N .

Theorem (Univariate with Unknown Divisor)

LetN be an integer of unknown factorization, which has an unknown divisor
b ≥ Nβ , 0 < β ≤ 1. Let c ≥ 1, and let f(x) be a univariate monic polynomial
of constant degree δ. Then one can find all solutions x0 of the equation

f(x) ≡ 0 mod b with |x0| < cN
β2

δ

in time O(c log6+ϵN) for any ϵ > 0.

Use a similar strategy and work modulo b instead of N .

Mengce Zheng Lattice-Based Cryptanalysis Theoretical Foundations Coppersmith-Type Theorems Page 17 / 71



2.2.5 EXTENSION: TIGHT BOUND
The bound can be made tighter due to Coppersmitha and Mayb.

Theorem (Univariate with Tight Bound)

LetN be an integer of unknown factorization, which has an unknown divisor
b ≥ Nβ , 0 < β ≤ 1. Let 0 < ϵ ≤ β/7, and let f(x) be a univariate monic
polynomial of degree δ. Then one can find all solutions x0 of the equation

f(x) ≡ 0 mod b with |x0| ≤
1

2
N

β2

δ
−ϵ

in time O(ϵ−7δ5 log2N).

aSmall Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities
bUsing LLL-Reduction for Solving RSA and Factorization Problems
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2.2.6 BIVARIATE POLYNOMIAL CASE
There exists Coppersmith-type theorem for bivariate integer polynomials and
some improvements can be found in Coron’s worka.

Theorem (Bivariate)

Let f(x, y) be an irreducible bivariate polynomial of maximum degree δ sep-
arately. Let X and Y be the upper bounds, and letW = maxi,j |cij |XiY j . If
XY < W 2/(3δ), then one can find all integer pairs (x0, y0) such that

f(x0, y0) = 0 with |x0| ≤ X, |y0| ≤ Y

in time polynomial in (logW, 2δ).

aFinding Small Roots of Bivariate Integer Polynomial Equations: A Direct Approach
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2.3.1 MULTIVARIATE GENERALIZATION
Coppersmith’s method can be generalized to scenarios with more variables and
more equations. It will be referred to as lattice-based solving strategy.

Involved Stages

1. Identify polynomials to be solved along with estimated bounds
2. Construct polynomials sharing a root for well-chosen parameters
3. Transform the scaled coefficient vectors into a lattice basis matrix
4. Calculate smallest reduced basis vectors from the above lattice
5. Transform output reduced vectors into several integer equations
6. Extract desired root over the integers using any simple methods
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2.3.2 DETAILED DESCRIPTION (1)

Target Problem

Given an irreducible n-variate integer polynomial f(x1, . . . , xn) such that

f(x⋆1, . . . , x
⋆
n) ≡ 0 mod u,

and given bounds |x⋆i | ≤ Xi, the target is to efficiently recover the root
(x⋆1, . . . , x

⋆
n). Establishing appropriate bounds Xi is crucial for deriving a

solvable condition.

There exist some extended cases:
• The number of given polynomials can be extended to more than one
• The modulus can be extended to an unknown one with its multiple u

Mengce Zheng Lattice-Based Cryptanalysis Theoretical Foundations Lattice-Based Solving Strategy Page 21 / 71



2.3.3 DETAILED DESCRIPTION (2)

Shift Polynomials

Construct shift polynomials gk(x1, . . . , xn) for m and 1 ≤ k ≤ ω such that
each gk(x

⋆
1, . . . , x

⋆
n) ≡ 0 mod um using a positive integer m. A standard way

is to define
gk(x1, . . . , xn) := xik11 · · ·xiknn f jkum−jk ,

where (ik1, . . . , ikn, jk) belong to an index set (relating to a monomial set)

I = {(ik1, . . . , ikn, jk) : ik1, . . . , ikn, jk ∈ Z, ik1, . . . , ikn ≥ 0, 0 ≤ jk ≤ m}.

They shall share a common root (x⋆1, . . . , x⋆n) modulo R = um.

It’s suggested to use extra shifts on variables xi’s with positive integers ti’s.
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2.3.4 DETAILED DESCRIPTION (3)

Coefficient Vectors

Using a proper ordering of monomials and polynomials, form a lattice Λ by
representing the coefficient vectors of the scaled shift polynomials

gk(x1X1, . . . , xnXn)

as the rows b⃗1, . . . , b⃗ω of a basis matrix B. Moreover, B can be full-rank and
triangular under suitable arranging orders.

Generally, each shift polynomial will introduce its leading monomial as a new
contribution to the diagonal of basis matrix B.
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2.3.5 DETAILED DESCRIPTION (4)

Lattice Reduction

Regarding derived coefficient vectors as b⃗i for i = 1, . . . , ω and construct

Λ =

{
ω∑

i=1

zi⃗bi : zi ∈ Z

}
.

Perform LLL reduction toB to obtain several reduced vectors v⃗1, . . . , v⃗k with
k ≥ n. These vectors correspond to integer polynomials hi(x1, . . . , xn), each
satisfying hi(x⋆1, . . . , x⋆n) ≡ 0 mod R by construction.

How to make det(Λ) as small as possible and how to use helpful polynomials
as many as possible are two most challenging issues.
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2.3.6 DETAILED DESCRIPTION (5)

Root Extraction

If hi(x1, . . . , xn) for 1 ≤ i ≤ k are algebraically independent, these simulta-
neous integer equations can be solved through Gröbner basis approach or
resultant computation. The common root (x⋆1, . . . , x⋆n) is finally recovered.
While the assumption of algebraic independence for n ≥ 2 is heuristic, nu-
merical experiments generally support its validity.

There are mainly two methods for extracting the root:
• The Gröbner basis computation can be used for more variables
• The resultant computation may be used for two or three variables
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2.3.7 DETAILED DESCRIPTION (6)

For the generalized lattice-based solving strategy, one needs similar LLL Lemma
in a generalized form.

LLL Lemma (Generalization)

Let Λ be a given ω-dimensional lattice with input basis matrix B. The LLL-
algorithm outputs a reduced basis (v⃗1, v⃗2, . . . , v⃗ω) such that

∥v⃗i∥ ≤ 2
ω(ω−1)

4(ω+1−i) det(Λ)
1

ω+1−i for i = 1, 2, . . . , ω.

in time polynomial in (ω,Bmax).

For any integer k ≤ ω, the LLL bound is ∥v⃗1∥, . . . , ∥v⃗k∥ ≤ 2
ω(ω−1)

4(ω+1−k) det(Λ)
1

ω+1−k .
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2.3.8 DETAILED DESCRIPTION (7)

For the generalized lattice-based solving strategy, one needs similar HG Lemma
in a generalized form.

HG Lemma (Generalization)

Let h(x1, x2, . . . , xn) be an integer polynomial containing at most ω mono-
mials. Suppose R,X1, X2, . . . , Xn are certain positive integers. If

h(x⋆1, x
⋆
2, . . . , x

⋆
n) ≡ 0 mod R and ∥h(x1X1, x2X2, . . . , xnXn)∥ <

R√
ω
,

with |x⋆i | ≤ Xi for i = 1, . . . , n, then it follows that h(x⋆1, x⋆2, . . . , x⋆n) = 0 over
the integers.
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2.3.9 ENABLING CONDITION
Solution can be achieved when the following condition holds:

2
ω(ω−1)

4(ω+1−k) det(Λ)
1

ω+1−k <
R√
ω
,

which is rearranged as

det(Λ) < 2−
ω(ω−1)

4 ω−ω+1−k
2 Rω+1−k.

In practice, since k < ω ≪ R, it implies det(Λ) < Rω−ϵ for some tiny ϵ.

Asymptotic Enabling Condition

det(Λ) < Rω −→ | det(B)| < Rω
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2.4.1 BIVARIATE INTEGER POLYNOMIALS
Blömer and Maya offers a general framework for extracting potential roots of
bivariate integer polynomials with various Newton polygons.

BM Theorem

Consider an irreducible bivariate integer polynomial f(x, y), where the de-
grees are dx and dy respectively. LetX,Y be the upper bounds on potential
root (x⋆, y⋆), let W denote ∥f(xX, yY )∥∞, and let S,M be two admissible
monomial sets with S ⊆ M. Set s = |S|, m = |M| and sx =

∑
xiyj∈M\S i,

sy =
∑

xiyj∈M\S j as the exponent sums for monomials xiyj . Then all po-
tential roots satisfying f(x⋆, y⋆) = 0 can be extracted in time polynomial in
(m, dx, dy, logW ) if XsxY sy < W s.

aA Tool Kit for Finding Small Roots of Bivariate Polynomials Over the Integers
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2.4.2 MULTIVARIATE MODULAR POLYNOMIALS
Jochemsz and Maya describes a framework for finding small modular roots of
multivariate polynomials. Let l be a leading monomial of f and fix a positive
integer m. For k ∈ {0, . . . ,m+ 1}, define the setMk of monomials:

Mk :=

{
xi11 x

i2
2 · · ·xinn | xi11 x

i2
2 · · ·xinn ∈ fm ∧ xi11 x

i2
2 · · ·xinn
lk

∈ fm−k

}
.

Define shift polynomials gi1,...,in :=
x
i1
1 x

i2
2 ···xin

n

lk
fkum−k, and condition is

n∏
j=1

X
sj
j < usu , for sj =

∑
x
i1
1 ···xin

n ∈M0

ij , su =

m∑
k=1

|Mk|.

aA Strategy for Finding Roots of Multivariate Polynomials with New Applications in Attacking RSA Variants
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2.4.3 MULTIVARIATE INTEGER POLYNOMIALS
Let degrees be dj for xj in f respectively. LetW denote ∥f(x1X1, . . . , xnXn)∥∞
and fix a positive integerm. Set R = W

∏n
j=1X

dj(m−1)
j and f ′ := c−1

0 f mod R to
restrict constant term of 1. Define S,M including monomials of fm−1 and fm:

S :=
{
xi11 · · ·xinn | xi11 · · ·xinn ∈ fm−1

}
, M :=

{
xi11 · · ·xinn | xi11 · · ·xinn ∈ fm

}
.

Define shift polynomials g := αf ′∏n
j=1X

dj(m−1)−ij
j for α ∈ S and g′ := αR for

α ∈ M \ S . The condition is
n∏

j=1

X
sj
j < W sW , for sj =

∑
x
i1
1 ···xin

n ∈M\S

ij , sW = |S|.
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2.4.4 UNRAVELLED LINEARIZATION
Herrmann and Maya present a simpler method to construct optimized lattices
that are used for finding small roots of polynomial equations. It optimizes small
private key attack on RSA using f(x, y) := 1 + x(A+ y) mod e.

Example

Perform a suitable linearization of the original polynomial:

1 + xy︸ ︷︷ ︸
u

+Ax mod e −→ f̄(u, x) = u+Ax

with a relation u = xy+1. The induced relation is incorporated to substitute
each occurrence of xy by the term u− 1.

aMaximizing Small Root Bounds by Linearization and Applications to Small Secret Exponent RSA
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2.4.5 ROOT BALANCING
Takayasu and Kunihiroa introduce the strategy for algorithm constructions that
take into account the sizes of the root bounds and gain improvements.

Example

Given some positive integers N, a0, a1, . . . , an, and given (0, 1) real num-
bers γ1, . . . , γn, β, one wants to find all integers r1, . . . , rn such that |r1| ≤
Nγ1 , . . . , |rn| ≤ Nγn , b ≥ Nβ , and a0 + a1r1 + · · · + anrn = 0 mod b. The
optimized selection (using m, t) of shift polynomials is to satisfy

0 ≤
n∑

j=1

ij ≤ m and 0 ≤
n∑

j=1

γjij ≤ βt.

aBetter Lattice Constructions for Solving Multivariate Linear Equations Modulo Unknown Divisors
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2.4.6 MINKOWSKI SUM
Aonoa investigates lattice constructions for more simultaneous equations and
proposes amethod to construct a lattice by combining lattices for solving single
equations.

Example

Suppose one has lattices spanned by shift polynomials {g1, . . . , gω1} and
{g′1, . . . , g′ω2

} for modular f1(x1, y) and f2(x2, y). The Minkowski sum based
lattice construction can generate a lattice basis as a set of polynomials:∑

akgk1g
′
k2

with certain range of (k1, k2) and coefficients ak of the combination.

aMinkowski Sum Based Lattice Construction for Multivariate Simultaneous Coppersmith’s Technique and Applications to RSA
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2.4.7 EXPONENTS ADJUSTMENT
Lu et al.a revisit the problem of finding small solutions to a collection of linear
equations modulo an unknown divisor. They propose several generalizations
by introducing multiple parameters for adjusting exponents.

Theorem

Let N be a composite integer of unknown factorization, which has a divisor
bu (b ≥ Nβ , u ≥ 1). Let f(x) be a univariate linear polynomial. Then one can
find all solutions x0 of the equation

f(x) ≡ 0 mod bv with v ≥ 1, |x0| ≤ Nuvβ2−ϵ

in time O(ϵ−7v2 log2N) for every ϵ > 0.

aSolving Linear Equations Modulo Unknown Divisors: Revisited
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3. CRYPTANALYSIS APPLICATIONS
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3.1.1 STEREOTYPED MESSAGES (1)

Consider working with RSA using a small public encryption exponent e = 3. Let
c = m3 mod N , where one knows an approximationm1 of the message up to an
additive error of size at most m−m1 < N

5
21 , i.e., there exists m0 such that

m0 = m−m1 for m0 < N
5
21 .

Problem Description

Given: c = m3 mod N and some m1 satisfying m−m1 < N
5
21

Polynomial: f(x) = (x+m1)
3 − c mod N with root x0 = m−m1 < N

5
21

Parameters: degree δ = 3
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3.1.2 STEREOTYPED MESSAGES (2)

Set m = 2, i.e. all polynomials have root x0 modulo N2. Define the collection
of seven polynomials:

N2, N2x, N2x2, Nf(x), xNf(x), x2Nf(x), f2(x).

Let X denote the bound and g1(x), . . . , g7(x) denote the above collection. The
coefficient vectors of gi(xX) for 1 ≤ i ≤ 7, define the following lattice basis:

Mengce Zheng Lattice-Based Cryptanalysis Cryptanalysis Applications Standard RSA Page 37 / 71



3.1.3 STEREOTYPED MESSAGES (3)

Lattice basisB spans a 7-dimensional latticeΛwith det(Λ) = | det(B)| = N9X21.
Using the enabling condition, one obtains

N9X21 < N2·7 −→ N
5
21 .

One recovers the lower 5/21 ≈ 0.238-fraction ofm in polynomial time. Theorem
application yields a superior bound for the bits that one can recover at the cost
of an increased running time.

Stereotyped Messages

Let c′ = me mod N with constant e. Assume one knows some m1 satisfying
m−m1 < cN

1
e for some c ≥ 1. Then m can be found in time O(c log6+ϵN).
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3.1.4 FACTORING WITH KNOWN BITS (1)

Let N = pq be an RSA modulus, w.l.o.g. p > q and therefore p > N
1
2 . Assume

that one knows a good approximation p1 of p up to an additive term of size at
most N 1

5 , i.e., there exists some p1 such that

p0 = p− p1 for p0 < N
1
5 .

Problem Description

Given: N = pq, p > N
1
2 and some p1 satisfying p− p1 < N

1
5

Polynomial: f(x) = x+ p1 mod p with root x0 = p− p1 < N
1
5

Parameters: degree δ = 1, divisor size β = 1
2
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3.1.5 FACTORING WITH KNOWN BITS (2)

Setm = 2, i.e. all polynomials have root x0 modulo p2. Define the collection of
five polynomials:

N2, Nf(x), f2(x), xf2(x), x2f2(x).

Let X denote the bound and g1(x), . . . , g5(x) denote the above collection. The
coefficient vectors of gi(xX) for 1 ≤ i ≤ 5, define the following lattice basis:

Lattice basis B spans a 5-dimensional lattice with det(Λ) = | det(B)| = N3X10.
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3.1.6 FACTORING WITH KNOWN BITS (3)

Using the enabling condition, one obtains

N3X10 < N
1
2
·2·5 = N5 −→ X < N

1
5 .

LLL reduction runs on lattice basis B in time O(log3N). Using above Theorem,
one may increase the bound N

1
5 at the cost of an increased run time.

Factoring with Known Bits

Let N be composite with divisor p > Nβ . Assume one is given p1 satisfying
p− p1 < cNβ2 for some c ≥ 1. Then p can be found in time O(c log6+ϵN).

Let N = pq be an RSA modulus with p > q, i.e. β = 1
2 . It implies that N can be

factored in polynomial time given half of the bits of p, i.e. p− p1 < N
1
4 < p

1
2 .
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3.1.7 SMALL PRIVATE KEY ATTACK (1)

Let N = pq be an RSA modulus with ϕ(N) = (p− 1)(q− 1) and ed ≡ 1 mod ϕ(N).
Assume that e is approximately of size N . Wienera discovered that when d <
1
3N

1
4 , N can be factored via continued fractions. One has

ed = 1 + k(N + 1− p− q) −→ ed = 1− k(p+ q − 1) + kN.

Problem Description

Given: N = pq and e satisfying ed ≡ 1 mod ϕ(N) with d < N
1
4

Polynomial: f(u, x) = u+xN mod e with root (u0, x0) = (1− k(p+ q− 1), k)

Parameters: |x0| = |k| < d and |u0| < k(p+ q − 1) < 3dN
1
2

aCryptanalysis of Short RSA Secret Exponents
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3.1.8 SMALL PRIVATE KEY ATTACK (2)

Setm = 1, i.e. all polynomials have root (u0, x0)modulo e. Define the collection
of two polynomials:

g1(u, x) = ex, g2(u, x) = f(u, x).

Let U,X denote the bounds and the integer linear combinations of the coeffi-
cient vectors of g1(uU, xX) and g2(uU, xX) form the following lattice basis:

B =

(
eX
NX U

)
.

Lattice basis B spans a 2-dimensional lattice with det(Λ) = | det(B)| = eUX .
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3.1.9 SMALL PRIVATE KEY ATTACK (3)

Using the enabling condition, one obtains

eUX ≈ X2N
3
2 < e2 ≈ N2 −→ X < N

1
4 .

The LLL-algorithm runs on lattice basis B in time O(log1+ϵN). Coppersmith’s
method guarantees only that one can find a polynomial

h(u, x) = h0u+ h1x

from an LLL-reduced shortest lattice vector such that h(u0, x0) = 0. It remains
to recover the root (u0, x0). One can conclude from h(u0, x0) = 0 that

h0u0 = −h1x0

Since gcd(u0, x0) = 1, it follows that x0 = |h0| and u0 = −|h1|.
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3.1.10 SMALL PRIVATE KEY ATTACK (4)

Boneh and Durfeea further improve on Wiener’s N 1
4 -bound. They focus on the

same modular equation using more shift polynomials.

Problem Description

Given: N = pq and e satisfying ed ≡ 1 mod ϕ(N) with d < N0.263

Polynomial: f(u, x) = u+xN mod e with root (u0, x0) = (1− k(p+ q− 1), k)

Parameters: |x0| = |k| < d and |u0| < k(p+ q − 1) < 3dN
1
2

Setm = 4 and denote d < X = N δ , U ≈ XY = N
1
2
+δ . All the polynomials have

root (u0, x0) modulo e4.
aCryptanalysis of RSA with Private Key d Less than N0.292
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3.1.11 SMALL PRIVATE KEY ATTACK (5)
One takes the powers of f i(u, x) for i = 3, 4 and in addition the polynomial
yf4(u, x). That is, there are now 10 polynomials:

e4x3, e3x2f, e2xf2, ef3, e4x4, e3x3f, e2x2f2, exf3, f4, yf4.

Let U,X denote the bounds and the integer linear combinations of the coeffi-
cient vectors of gi(uU, xX) for 1 ≤ i ≤ 10 form the following lattice basis B:
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3.1.12 SMALL PRIVATE KEY ATTACK (6)

Lattice basisB spans a 10-dimensional latticeΛ and its determinant is det(Λ) =
| det(B)| = e20U20X16Y . Using the enabling condition, one obtains

e20U20X16Y < e4·10 −→ N δ < N
19
72 ≈ N0.263.

One finds polynomials with root (x0, y0) over the integers in polynomial time
via lattice reduction. The bound is finally improved to N0.292

Small Private Key Attack

Let N be an RSA modulus with ed ≡ 1 mod ϕ(N), e ≈ N and d < N0.292.
Then N can be factored in time O(log6+ϵN) for any ϵ > 0.

One computes y0 = p+ q− 1 from two polynomials via resultant computation.
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3.2.1 CUBIC PELL RSA
Basic Information
• A new RSA variant introduced by Murru and Saettonea
• Based on cubic Pell equation x3 + ry3 + r2z3 − 3rxyz = 1

• Use a novel group with a non-standard product ⊙ on tuple (m1,m2)

aA Novel RSA-Like Cryptosystem Based on a Generalization of the Rédei Rational Functions

Key Information

• Public/private keys are (N, e, r)/(d, p, q) with N = pq

• Use ed ≡ 1 mod ϕ(N) for ϕ(N) = (p2 + p+ 1)(q2 + q + 1)

• Key equation is ed− k(p2 + p+ 1)(q2 + q + 1) = 1 for an unknown k

Mengce Zheng Lattice-Based Cryptanalysis Cryptanalysis Applications New RSA Variant Page 48 / 71



3.2.2 SMALL PRIVATE KEY ATTACK (1)

Zheng et al.a investigate the potential small private key attack and show it is
vulnerable for d < N2−

√
2.

Bivariate Modular Equation

Its key equation is ed = k((p+q)2+(N+1)(p+q)+N2−N+1)+1. Consider
the following bivariate polynomial f(x, y):

x(y2 + ay + b) + 1 ≡ 0 mod e

where a = N + 1 and b = N2 − N + 1. Thus, (x⋆, y⋆) = (k, p+ q) is the
modular root. We set the upper bounds to be X = 2Nα+δ−2, Y = 3N

1
2 .

aCryptanalysis of the RSA Variant Based on Cubic Pell Equation
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3.2.3 SMALL PRIVATE KEY ATTACK (2)

Let h(y) := y2 + ay + b = y2 + h̄(y) for h̄(y) := ay + b. The original polynomial
f(x, y) is rewritten to

f(x, y) = xh(y) + 1 = x(y2 + h̄(y)) + 1 = (xy2 + 1) + xh̄(y).

Variable Relation

Letting z := xy2 + 1, we have f̄(x, y, z) := z + xh̄(y). The shift polynomials
g[i,j,k](x, y, z) are defined as

g[i,j,k](x, y, z) := xiyj f̄k(x, y, z)em−k = xiyj(z + xh̄(y))kem−k

for a fixed positive integer m and non-negative integers i, j, k.
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3.2.4 SMALL PRIVATE KEY ATTACK (3)

Shift Polynomials

We denote the set of shift polynomials by F := G ∪ H for

G := {g[i,j,k](x, y, z) : (i, j, k) ∈ IG},
H := {g[i,j,k](x, y, z) : (i, j, k) ∈ IH},

where the corresponding index set I := IG ∪ IH is defined by

IG := {(i, j, k) : i = 0, . . . ,m; j = 0, 1; k = 0, . . . ,m− i},
IH := {(i, j, k) : i = 0; j = 2, . . . , ⌊τk⌋+ 1; k = 0, . . . ,m},

for a parameter 0 ≤ τ ≤ 1 to be optimized later.
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3.2.5 SMALL PRIVATE KEY ATTACK (4)

Coefficient vectors of scaled shift polynomials g[i,j,k](xX, yY, zZ) generate the
basis matrix.

Coefficient Vectors

The polynomial order ≺p is defined as g[i,j,k] ≺p g[i′,j′,k′] if
• i+ k < i′ + k′; or
• i+ k = i′ + k′ and i < i′; or
• i = i′, k = k′ and j < j′.

The monomial order ≺m is defined as xiyjzk ≺m xi
′
yj

′
zk

′ in a similar way.

Notice that we shall substitute each occurrence of xy2 by the term z − 1.
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3.2.6 SMALL PRIVATE KEY ATTACK (5)

Integer Lattice

Regarding derived coefficient vectors as b⃗i for i = 1, . . . , ω and construct

Λ =

{
ω∑

i=1

zi⃗bi : zi ∈ Z

}
.

The lattice dimension ω is calculated as

ω =
∑

(i,j,k)∈I

1 =
2 + τ

2
m2 + o(m2).
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3.2.7 SMALL PRIVATE KEY ATTACK (6)

A toy example of the lattice basis matrix for m = 2 and τ = 1 is shown:
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3.2.8 SMALL PRIVATE KEY ATTACK (7)

Lattice Determinant

A lower triangular basis matrix only requires multiplication of the diagonal
terms for computing the determinant:

det(Λ) = eneXnXY nY ZnZ .

We obtain the respective exponents

ne =
1

6
(τ + 4)m3 + o(m3), nX =

1

3
m3 + o(m3),

nY =
τ2

6
m3 + o(m3), nZ =

1

3
(τ + 1)m3 + o(m3).
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3.2.9 SMALL PRIVATE KEY ATTACK (8)

Attack Bound

The solving condition det(Λ) < Rω with R = em yields

Nαne+(α+δ−2)nX+ 1
2
nY +(α+δ−1)nZ < Nαmω.

Simplify the exponents over N and obtain τ2 + (4δ− 4)τ +4α+8δ− 12 < 0.
By setting τ = 2 − 2δ, it further leads to δ < 2 −

√
α. Note that we must

ensure 0 ≤ τ = 2− 2δ ≤ 1 and finally have

δ < 2−
√
α for 1 ≤ α <

9

4
, or δ <

5

4
− α

3
for 9

4
≤ α <

15

4
.
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3.2.10 GENERALIZED CRYPTANALYSIS (1)

Kang and Zhenga present generalized cryptanalysis of cubic Pell RSA with its
generalized key equation eu− (p2 + p+ 1)(q2 + q + 1)v = w.

Trivariate Modular Equation

We have v(p+ q)2+(N +1)(p+ q)v+(N2−N +1)v+w ≡ 0 mod e. Consider
the following trivariate polynomial:

f(x, y, z) = xy2 + axy + bx+ z,

where a = N + 1 and b = N2 −N + 1. Thus, (x⋆, y⋆, z⋆) = (v, p+ q, w) is the
modular root. Set upper bounds to be X = 2Nβ+δ−2, Y = 3N

1
2 , Z = Nγ .

aGeneralized Cryptanalysis of Cubic Pell RSA
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3.2.11 GENERALIZED CRYPTANALYSIS (2)

Monomial Sets

Letm be a positive integer and t be a non-negative integer to be optimized
later. For 0 ≤ k ≤ m, we define the following monomial set

Mk =
⋃

0≤j≤2+t

{
xi1yi2+jzi3 : xi1yi2zi3 is a monomial of f(x, y, z)m

and xi1yi2zi3

(xy2)k
is a monomial of f(x, y, z)m−k

}
.

We can obtain an accurate description of i1, i2, i3 for each xi1yi2zi3 ∈ Mk:

i1 = k, . . . ,m, i2 = 2k, . . . , 2i1 + 2 + t, i3 = m− i1.
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3.2.12 GENERALIZED CRYPTANALYSIS (3)

Shift Polynomials

We define the following shift polynomials for xi1yi2zi3 ∈ Mk \Mk+1:

gk,i1,i2,i3(x, y, z) =
xi1yi2zi3

(xy2)k
f(x, y, z)kem−k.

Furthermore, shift polynomials can be divided into two polynomial sets:

Gk,i1,i2,i3(x, y, z) = xi1−kyi2−2kzi3f(x, y, z)kem−k,

k = 0, . . .m, i1 = k, . . . ,m, i2 = 2k, 2k + 1, i3 = m− i1,

Hk,i1,i2,i3(x, y, z) = yi2−2kzi3f(x, y, z)kem−k,

k = 0, . . .m, i1 = k, i2 = 2k + 2, . . . , 2i1 + 2 + t, i3 = m− i1.
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3.2.13 GENERALIZED CRYPTANALYSIS (4)

Coefficient vectors of Gk,i1,i2,i3(xX, yY, zZ) andHk,i1,i2,i3(xX, yY, zZ), withX , Y ,
and Z denoting the upper bounds generate the basis matrix.

Coefficient Vectors

Concerning row order, precedence is given to any Gk,i1,i2,i3 over anyHk,i1,i2,i3 .
The polynomial order ≺p is established as (k, i1, i2, i3) ≺p (k′, i′1, i

′
2, i

′
3) if

• k < k′; or
• k = k′ and i1 < i′1; or
• k = k′, i1 = i′1 and i2 < i′2; or
• k = k′, i1 = i′1, i2 = i′2 and i3 < i′3.

The monomial order ≺m is defined as xi1yi2zi3 ≺m xi
′
1yi

′
2zi

′
3 in a similar way.
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3.2.14 GENERALIZED CRYPTANALYSIS (5)

Integer Lattice

Regarding derived coefficient vectors as b⃗i for i = 1, . . . , ω and construct

Λ =

{
ω∑

i=1

zi⃗bi : zi ∈ Z

}
.

The lattice dimension ω is calculated as

ω =

m∑
k=0

m∑
i1=k

2k+1∑
i2=2k

m−i1∑
i3=m−i1

1 +

m∑
k=0

k∑
i1=k

2i1+2+t∑
i2=2k+2

m−i1∑
i3=m−i1

1 = (m+ 1)(m+ t+ 3).
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3.2.15 GENERALIZED CRYPTANALYSIS (6)

A toy example of the lattice basis matrix for m = 2 and t = 0 is shown:
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3.2.16 GENERALIZED CRYPTANALYSIS (7)

Lattice Determinant

A lower triangular basis matrix only requires multiplication of the diagonal
terms for computing the determinant:

det(Λ) = eneXnXY nY ZnZ .

Letting t = τm with a real τ ≥ 0, we obtain ω = (τ + 1)m2 + o(m2) and

ne =
1

6
(3τ + 4)m3 + o(m3), nX =

1

6
(3τ + 4)m3 + o(m3),

nY =
1

6

(
3τ2 + 6τ + 4

)
m3 + o(m3), nZ =

1

6
(3τ + 2)m3 + o(m3).
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3.2.17 GENERALIZED CRYPTANALYSIS (8)

Attack Bound

The solving condition det(Λ) < Rω with R = em yields

Nβne+(β+δ−2)nX+ 1
2
nY +γnZ < Nβmω.

Simplify the exponents over N and obtain

δ <
−3τ2 + (6− 6γ)τ + 12− 4β − 4γ

6τ + 8
.

By setting τ = (2
√
1 + 3β − 3γ − 4)/3, it further leads to

δ <
7

3
− γ − 2

3

√
1 + 3β − 3γ.
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4. RECENT ADVANCES
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4.1 LIMITATIONS OF EXISTING STRATEGIES
Ryana examines the problem of finding small solutions to systems of modular
multivariate polynomials.

Limitations
• The main difficulty is shift polynomial selection stage
• Rely on heuristics: one crafts monomial sets and shifts by hand
• The manual design is time-consuming: new problem-specific
strategies often take years of work to improve bounds

• Existing multivariate Coppersmith bounds lag behind potential:
lattice dimensions can be huge and asymptotic analysis is hard

aSolving Multivariate Coppersmith Problems with Known Moduli
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4.2 MAIN CONTRIBUTIONS
This research develops automated algorithms to analyze shift polynomials, thus
reducing manual work.

Advantages

• Optimal shifts via Gröbner bases: Provably find the best shift
polynomials from the polynomial ideal

• Graph-based monomial selection: Heuristically identify low-rank
sublattices by analyzing coefficients with a directed graph

• Symbolic precomputation: Precompute shift-polynomial data and use
polytope analysis to automatically determine asymptotic bounds

He conducts extensive evaluation on 14 standard Coppersmith problems, new
methods match or improve prior bounds and produce smaller lattices.
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4.3 SHIFT POLYNOMIAL SELECTION
Involved Steps

• Form ideal J generated by input polynomials (with known modulus)
• Compute a D-Gröbner basis G of J under a weight monomial order
• For each monomial α in the finite superset ofM, find g ∈ G with

LM(g) | α, choose g with minimal leading coefficient, and set shift to
be g · (α/LM(g))

• This produces a set S of shift polynomials (support in monomial set
M) that is suitable and optimal

The lattice from these shifts is the optimal dual lattice for Coppersmith’s bound.
In practice, this lattice has the shortest possible basis vectors.
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4.4 GRAPH-BASED MONOMIAL SELECTION
Many shift polynomials are sparse, implying some lattice columns are zero.

Involved Steps

• Yield a dense sublattice: dropping these columns lowers rank with
little cost.

• Build a directed graph G: vertices are monomials inM, draw an edge
(α1 → α2) if f ∈ S has LM(f) = α1 and a nonzero coefficient on α2

• Find a maximum-weight closure in G and select a subsetMsub ⊂ M
(and Ssub) with no outgoing edges, minimizing det(ΛSsub)

1/|Ssub|

Exploiting sparsity helps bridge the gap between theoretical LLL bounds and
observed performance.
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4.5 SYMBOLIC PRECOMPUTATION
It presents a strategy based on symbolic precomputation of a set of shift poly-
nomials and extend this precomputed set to higher multiplicities.

Involved Steps

• Symbolically represent the problem: treat unknown constants as
variables and compute a generic ideal Ĵ and its shifts

• Compute the monomial set via a convex hull (a polytope) and use
Ehrhart polynomials to count monomials and bound lattice dimension

• Precompute shift polynomials for Ĵ , then specialize to each instance
by interpolation and avoid repeated expensive computations

• Substitute optimizing parameters and consider asymptotic behavior

It fully automates asymptotic Coppersmith analysis for multivariate systems.
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4.6 EVALUATION ON EXISTING PROBLEMS
This research test on 14 known multivariate Coppersmith instances.

Experimental Results

• Recovery Bounds: The provable (Gröbner) strategy always matched or
improved the best-known root size bounds

• Lattice Dimension: The graph-based method often achieved the same
bounds with significantly smaller lattices

• Runtime: The precomputation strategy gave similar bounds and
lattice sizes with much faster solve times

• Asymptotic: Automated polytope analysis reproduced the strongest
known asymptotic exponents.
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4.7 FUTURE WORK
Recent advances introduces a suite of methods to automate multivariate Cop-
persmith attacks and achieve state-of-the-art results.

Remaining Challenges

• The heuristics still require parameter choices. E.g, selecting monomial
vertices in the polytope must be done manually

• The graph-based methods are ineffective against integer Coppersmith
problems and it requires further analysis

• How to calculate the determinant of Coppersmith lattices when that
are not full-rank

• It does not capture the multi-step approaches, which construct
multiple Coppersmith lattices to gain partial information of roots
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