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1. INITIAL RESEARCH

At EUROCRYPT 1996, Coppersmith proposed two lattice-based methods for find-
ing small roots of polynomial equations, one method for polynomial equations
over the integers® and one for modular polynomial equations®.

Example: Solve f(z) =0 mod N

Find all roots smaller than a certain bound X in polynomial time
Bound X is generally of exponential size in the bit-size of modulus
The use of LLL reduction algorithm is sufficient (no need for SVP)
Bridges modular polynomial equations and integer solutions

9Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known
bFinding a Small Root of a Univariate Modular Equation
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1. CRYPTANALYSIS APPLICATIONS

The prominent cryptanalysis applications of Coppersmith’s techniques include
small private key attacks on RSA and its variants.

Some Known Results

e d < N9292 for standard RSA® with d = e~! mod ¢(N)
o d,,d, < N"122 for CRT-RSA? with d,, = d mod p— 1 and d, = d mod ¢ — 1

e d < N'=V" for Multi-Prime RSA¢ with N = p; --- p,, 7 > 3

2—/2 . . . a
e d < N1 for Takagi's (Prime Power) RSA variant? with N = p’q,r > 2

Cryptanalysis of RSA with Private Key d Less than N%-292

®Small CRT-exponent RSA revisited

‘General Bounds for Small Inverse Problems and Its Applications to Multi-Prime RSA
ISmall Secret Key Attack on a Variant of RSA Due to Takagi

\ J
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1. LATTICE-BASED RSA CRYPTANALYSIS

The initial stage (1996-2006) has a gradual growth with few publications and
the development stage (2007-present) reveals an increasing interest?.
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ILattice-Based Cryptanalysis of RSA-Type Cryptosystems: A Bibliometric Analysis
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21. COPPERSMITH’S IDEA

Given a polynomial f(z) of degree § over the ring Zy for some integer N of
unknown factorization, one aims to find all roots of f(z) in a certain interval.

Idea Description

One tries to construct a polynomial g(z) of usually larger degree from f(z)
such that every small modular root z( of f, i.e. f(z¢) =0 mod N with |z¢| <
X, is also a root of g over Z.

f(zo)=0mod N — g(z9) =0

\ J

It reduces modular univariate root finding to integer univariate root finding, for
which there exist standard methods.
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21. FURTHER ANALYSIS (1)

Fix m € Z and construct g as an integer linear combination of multiples of
hij = o N'f™ ().

Notice that every root z( of f satisfies
hi j(xzo) = 0 mod N™

Hence if g is an integer linear combination of the &, ;'s then one shall have
g(xp) = 0mod N™.

The core issue is to calculate the corresponding coefficients of g.
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21. FURTHER ANALYSIS (2)

Identify the polynomials h; ;(z) with their coefficient vectors. The integer linear
combinations of these vectors form an integer lattice A. The small vectors in A
correspond to possible linear combinations g(z) with small coefficients.

Key Observation

If g(x) has small coefficients, and is evaluated at small points zp with |zo| <
X, then the result must also be (somewhat) small. Assume that g(zo) is in
absolute value smaller than N for all |zy| < X:

g(zp) =0mod N™ and |g(xzo)| < |g(X)| < N™.

This implies that g(x) has the desired roots over the integers!

\
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21. FURTHER ANALYSIS (3)

If g(z) has sufficiently small coefficients, |g(z9)] < N™ should automatically
be fulfilled. An important lemma makes this intuition precise, which is usually
contributed to Howgrave-Graham®.

Let g(x) be a univariate polynomial with » monomials. Let m, X be positive
integers. Suppose that

Property 1. g(xg) = 0 mod N™, |zo| < X, and
Property 2. ||g(zX)|| < N™/\/n.
Then g(x¢) = 0 holds over the integers.

9Finding Small Roots of Univariate Modular Equations Revisited

Page 8 / 71
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21. FURTHER ANALYSIS (4)

Suppose g(z) = Y. , ¢z is a given univariate polynomial and its coefficient
vector is (co,c1,...,c,). Then scaled polynomial g(xX) has coefficient vector
(co,c1X,...,cp, X™), and its Euclidean norm is denoted by || g(zX)]|.

Proof Sketch

Property 2 implies

l9@o)l =[S ciah| < I feiab] <l XF < Valg@X)l < N™

Property 1 indicates that g(z() is @ multiple of N, and therefore g(z¢) = 0.

\

The goal is to determine g(z) with its coefficients using lattice reduction.
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21. LATTICE

A Lattice A is a discrete additive subgroup of R™ as well as the set of all integer
linear combinations of linearly independent vectors.

n
A:Zgl—i—--ul—Zl;n:{Zzil;i:zieZ, B;'ER”}
i=1

Basic Concepts

¢ Full-rank: dim(A) =n
e Basis vectors: by, ..., by,
e Basis matrix: B = ((b;);)nxn

e Lattice determinant: det(A) = | det(B)]
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21. LATTICE REDUCTION (1)

Lenstra-Lenstra-Lovasz reduction algorithm? outputs approximately shortest
vectors. Lattice-based cryptanalysis using Coppersmith’s techniques is widely
applied to public key cryptosystems.

Random Basis (1,3), (2,4) Reduced Basis (1,1), (—1,1)

LLL Algorithm

The LLL-algorithm runs in polynomial time regarding its input size.

9Factoring Polynomials With Rational Coefficients
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21. LATTICE REDUCTION (2)

Let A be the lattice spanned by the coefficient vectors. The LLL theorem relates
the length of a shortest vector in reduced basis of A to det(A).

LLL Theorem

Let A be a lattice spanned by by, ..., b,. The LLL-algorithm outputs a lattice
vector v € A satisfying
I5]| < 2°T det(A)7

in time O(n%log® Buax) and By = max; \(Ei)j\ is the largest basis entry.

\ J

A faster LLL-variant? runs in time O(n**<log' ™ B,.,) for any constant e > 0.

9Faster LLL-Type Reduction of Lattice Bases
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21. LATTICE REDUCTION (3)

Avector v in a Coppersmith-type lattice relates to a certain polynomial g(x), for
which it requires to satisfy HG Lemma. When LLL-algorithm outputs a vector ¢
is short enough and Property 2 have a link.

Key Link
The terms concerning n, 2", v/n can be omitted for sufficiently large N:
7] < 2T det(A)s < N™/v/n  —s  det(A) < N™.

This simplified inequality is the so-called enabling condition.

\

Try to construct h; ;s' coefficient vectors with det(A) as small as possible.
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2.2. UNIVARIATE POLYNOMIAL CASE

Ready to formulate Coppersmith-type theorem for univariate polynomials and
a full proof can be found in May’s work®.

Theorem (Univariate)

Let V be an integer of unknown factorization. Let f(x) be a univariate monic
polynomial of constant degree . Then one can find all solutions z, of the
equation

f()=0mod N with |zg| < N3

in time O(logf*c V) for any ¢ > 0.

& J

9Using LLL-Reduction for Solving RSA and Factorization Problems

Mengce Zheng Lattice-Based Cryptanalysis « Theoretical Foundations « Coppersmith-Type Theorems ®ooooo Page 14 [ 71



2.2. UNIVARIATE POLYNOMIAL CASE

Choose m = log N /¢ and define the collection of polynomials as

hi,j(m):a:jNif(x)m*i for 0<i<m,0<j<0.

Proof Sketch

The coefficient vectors of h; j(zX) form an n = dm ~ log N-dimensional
lattice basis B with det(A) = det(B) ~ NO™*/2x7*/2,

5%m? mn om? 4
2 < N™ =N — X < Ns.

sm?2 n2 om?2
2 =

N2X2=N2X

It works in an n = log N-dimensional lattice with largest entries of bit-size
10g Biax = O(mlog N) = O(log® N). The runtime is O(log®*“ N).

\ J
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2.2. EXTENSION: LARGER BOUND

Any small root bound X can be be extended to ¢X for some real number ¢ at
the expense of an additional run time factor of c.

Theorem (Univariate with Larger Bound)

Let N be an integer of unknown factorization and ¢ > 1. Let f(z) be a
univariate monic polynomial of constant degree 6. Then one can find all
solutions z( of the equation

f(z) =0mod N with |x0|<cN%

in time O(clog®™ N) for any e > 0.

& J

One can split the interval [—CN%,CN%] in ¢ sub-intervals of size each 2Ns.
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2.2. EXTENSION: UNKNOWN DIVISOR

One can extend Coppersmith’s method to find roots of f(x) modulo b, where
b > N*is an unknown divisor of N.

Theorem (Univariate with Unknown Divisor)

Let V be an integer of unknown factorization, which has an unknown divisor
b>NB 0< B <1 Lete>1,and let f(x) be a univariate monic polynomial
of constant degree 4. Then one can find all solutions z( of the equation

2
f(z) =0mod b with \x0|<cNﬁT

in time O(clog®™ N) for any e > 0.

- J

Use a similar strategy and work modulo b instead of V.

Page 17 / 71
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2.2. EXTENSION: TIGHT BOUND
The bound can be made tighter due to Coppersmith? and May®.

Theorem (Univariate with Tight Bound)

Let V be an integer of unknown factorization, which has an unknown divisor
b> NP 0< B <1 Let0 < e < /7, and let f(x) be a univariate monic
polynomial of degree 6. Then one can find all solutions z of the equation

. 1 p2
f(x)=0mod b with |zg| < §N%*€

in time O(¢~76% log? N).

\ J

9Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities
®Using LLL-Reduction for Solving RSA and Factorization Problems
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2.2. BIVARIATE POLYNOMIAL CASE

There exists Coppersmith-type theorem for bivariate integer polynomials and
some improvements can be found in Coron’s work?.

Theorem (Bivariate)

Let f(x,y) be anirreducible bivariate polynomial of maximum degree § sep-
arately. Let X and Y be the upper bounds, and let W = max; j [¢;;| X'Y7. If
XY < W?/39) then one can find all integer pairs (z0,yo) such that

f(m(]ay()) =0 Wlth |.’E0| SXa |?JO| SY

in time polynomial in (log W, 2%).

&

9Finding Small Roots of Bivariate Integer Polynomial Equations: A Direct Approach
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2.3. MULTIVARIATE GENERALIZATION

Coppersmith’s method can be generalized to scenarios with more variables and
more equations. It will be referred to as lattice-based solving strategy.

Involved Stages

Identify polynomials to be solved along with estimated bounds
Construct polynomials sharing a root for well-chosen parameters
Transform the scaled coefficient vectors into a lattice basis matrix
Calculate smallest reduced basis vectors from the above lattice
Transform output reduced vectors into several integer equations
Extract desired root over the integers using any simple methods

e N ogr N 2

Mengce Zheng Lattice-Based Cryptanalysis « Theoretical Foundations + Lattice-Based Solving Strategy @cooooooo Page 20 / 71



2.3. DETAILED DESCRIPTION (1)

Target Problem

Given an irreducible n-variate integer polynomial f(z1,...,z,) such that

fz7,...,2) =0 mod u,

and given bounds |z}| < X;, the target is to efficiently recover the root
(x},...,2}). Establishing appropriate bounds X; is crucial for deriving a

rrn

solvable condition.

\ J

There exist some extended cases:
e The number of given polynomials can be extended to more than one
e The modulus can be extended to an unknown one with its multiple u
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2.3. DETAILED DESCRIPTION (2)

Shift Polynomials

Construct shift polynomials gi(x1,...,z,) for m and 1 < k < w such that
each gi(z},...,2}5) = 0 mod u™ using a positive integer m. A standard way
is to define . o .

115« o o o ) 2= @ < o e gyl T T
where (i1, ..., i, jx) belong to an index set (relating to a monomial set)

1= {(ikl)"'aiknajk‘) : iklw"aikn:jk € Z7 ik‘l;"wikn > O) 0 S]k,‘ < m}

They shall share a common root (z3,...,z}) modulo R = u™.

\ J

It's suggested to use extra shifts on variables z;'s with positive integers ¢;'s.
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2.3. DETAILED DESCRIPTION (3)

Coefficient Vectors

Using a proper ordering of monomials and polynomials, form a lattice A by
representing the coefficient vectors of the scaled shift polynomials

gk(xlea cee 7ann)

as the rows 51, . b,, of a basis matrix B. Moreover, B can be full-rank and
triangular under suitable arranging orders.

. J/

Generally, each shift polynomial will introduce its leading monomial as a new
contribution to the diagonal of basis matrix B.
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2.3. DETAILED DESCRIPTION (4)

Lattice Reduction

Regarding derived coefficient vectors as b; for i = 1,...,w and construct

A= {izﬂizl GZ}.
=1

Perform LLL reduction to B to obtain several reduced vectors 1, . . . , U, with
k > n. These vectors correspond to integer polynomials h;(z1, . .., z,), each
satisfying h;(z%,...,z}) = 0 mod R by construction.

rrn

\ J

How to make det(A) as small as possible and how to use helpful polynomials
as many as possible are two most challenging issues.
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2.3. DETAILED DESCRIPTION (5)

Root Extraction

If hi(x1,...,2y,) for 1 <i < k are algebraically independent, these simulta-
neous integer equations can be solved through Grobner basis approach or
resultant computation. The common root (7, ..., ) is finally recovered.
While the assumption of algebraic independence for n > 2 is heuristic, nu-
merical experiments generally support its validity.

There are mainly two methods for extracting the root:
e The Grobner basis computation can be used for more variables
e The resultant computation may be used for two or three variables
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2.3. DETAILED DESCRIPTION (6)

For the generalized lattice-based solving strategy, one needs similar LLL Lemma
in a generalized form.

LLL Lemma (Generalization)

Let A be a given w-dimensional lattice with input basis matrix B. The LLL-
algorithm outputs a reduced basis (71, v, . . . , 9,,) such that

w(w—1)
7] < 2%@+=9) det(A)erll—i for i=1,2,...,w.

in time polynomial in (w, Brax)-

& J

. . _wlw=1)
For any integer k£ < w, the LLL bound is ||#||,. .., ||Tk| < 23@+1=F det(A) S,
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2.3. DETAILED DESCRIPTION (7)

For the generalized lattice-based solving strategy, one needs similar HG Lemma
in a generalized form.

HG Lemma (Generalization)

Let h(z1,x9,...,x,) be an integer polynomial containing at most w mono-
mials. Suppose R, X1, Xo,..., X, are certain positive integers. If

R
h(z},25,...,25) =0mod R and |h(z1X1,29Xo,...,2,X,)| < 7o
w

with |2¥| < X; fori =1,...,n, then it follows that h(z%,23,...,27) = 0 over
the integers.

-
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2.3. ENABLING CONDITION

Solution can be achieved when the following condition holds:

w(w—1) 1 R
DT det(A) TR <

\/a’

which is rearranged as

det(A) < 2~ 25 = =5 Rtk

In practice, since k < w < R, itimplies det(A) < R“~< for some tiny .

Asymptotic Enabling Condition

det(A) < R® —» |det(B)| < R
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2.4, BIVARIATE INTEGER POLYNOMIALS

Blomer and May? offers a general framework for extracting potential roots of
bivariate integer polynomials with various Newton polygons.

BM Theorem

Consider an irreducible bivariate integer polynomial f(z,y), where the de-
grees are d, and d,, respectively. Let X,Y be the upper bounds on potential
root (z*,y*), let W denote || f(zX,yY)|/c, and let S, M be two admissible
monomial sets with S C M. Set s = [S|, m = M| and sz = 3" i ic s b
Sy = ZziyjeM\Sj as the exponent sums for monomials z’y7. Then all po-
tential roots satisfying f(x*,4*) = 0 can be extracted in time polynomial in
(m, dy, dy, log W) if X52YS0 < W5,

9A Tool Kit for Finding Small Roots of Bivariate Polynomials Over the Integers
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2.4, MULTIVARIATE MODULAR POLYNOMIALS

Jochemsz and May? describes a framework for finding small modular roots of
multivariate polynomials. Let [ be a leading monomial of f and fix a positive
integer m. For k € {0,...,m + 1}, define the set M, of monomials:

My = afta - x| aftad e [N I Loe fm~
. . 1,02 pin .. )
Define shift polynomials g;,,...;, := =2~ f*u™*, and condition is

n m
X7 <we, for sj= Y i su=>_ Myl
j=1 k=1

i -
Tt EMo

9A Strategy for Finding Roots of Multivariate Polynomials with New Applications in Attacking RSA Variants
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2.4, MULTIVARIATE INTEGER POLYNOMIALS

Let degrees be d; for z; in f respectively. Let W denote || f(z1X1,...,20X0n)|/o0
and fix a positive integer m. Set R = W [[’_, ij(m_l) and f':=c;'f mod Rto
restrict constant term of 1. Define S, M including monomials of f™~! and f™:

S = {:L"llxil” | it - Efm_l}, M = {xlllx:l" | it - Gfm}.

Define shift polynomials g := af’ H}ll X;ij(m—l)

a € M\ S. The condition is

i fora € Sand ¢ := aR for

n
X7 <wew, for s;= > iy, sw =18l
i=1 Tl eM\S
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2.4, UNRAVELLED LINEARIZATION

Herrmann and May? present a simpler method to construct optimized lattices
that are used for finding small roots of polynomial equations. It optimizes small
private key attack on RSA using f(z,y) := 1+ z(A + y) mod e.

Perform a suitable linearization of the original polynomial:

l1+zy+Armode — flu,z)=u+ Ax
——

u

with a relation v = zy+1. The induced relation is incorporated to substitute
each occurrence of zy by the term v — 1.

\

“Maximizing Small Root Bounds by Linearization and Applications to Small Secret Exponent RSA
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2.4, ROOT BALANCING

Takayasu and Kunihiro?® introduce the strategy for algorithm constructions that
take into account the sizes of the root bounds and gain improvements.

Given some positive integers N, ag,a,...,a,, and given (0,1) real num-
bers v1,...,7, 3, one wants to find all integers rq,...,r, such that |r;| <
N el < N7 b > NP®, and ag + a1r1 + -+ + aprn, = 0mod b. The

optimized selection (using m, t) of shift polynomials is to satisfy

n n
0<> i;<m and 0<) ;i < ft.
i=1 j=1

9Better Lattice Constructions for Solving Multivariate Linear Equations Modulo Unknown Divisors
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2.4, MINKOWSKI SUM

Aono? investigates lattice constructions for more simultaneous equations and

proposes a method to construct a lattice by combining lattices for solving single
equations.

Suppose one has lattices spanned by shift polynomials {g1,...,g.,} and

{g1,...,4.,} for modular fi(z1,y) and fa(x2,y). The Minkowski sum based
lattice construction can generate a lattice basis as a set of polynomials:

Z a’kgklg;gz

with certain range of (k1, k2) and coefficients a; of the combination.

\

9Minkowski Sum Based Lattice Construction for Multivariate Simultaneous Coppersmith’s Technique and Applications to RSA
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2.4, EXPONENTS ADJUSTMENT

Lu et al.9 revisit the problem of finding small solutions to a collection of linear
equations modulo an unknown divisor. They propose several generalizations
by introducing multiple parameters for adjusting exponents.

Let N be a composite integer of unknown factorization, which has a divisor
b* (b > NP u > 1). Let f(z) be a univariate linear polynomial. Then one can
find all solutions xz( of the equation

f(x) = 0 mod bv With v Z 1’ ‘$0| S NUUB27E

in time O(¢~"v?log? N) for every ¢ > 0.

. J

9Solving Linear Equations Modulo Unknown Divisors: Revisited
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3.1 STEREOTYPED MESSAGES (1)

Consider working with RSA using a small public encryption exponent ¢ = 3. Let
c = m? mod N, where one knows an approximation m; of the message up to an
additive error of size at most m — m; < N%, i.e., there exists mg such that

5
mo=m—mq for mgy< No2I.

Problem Description

Given: ¢ = m? mod N and some m; satisfying m — m; < Nt
Polynomial: f(x) = (x +m1)? — c mod N with root zp = m — m; < N3t
Parameters: degree §j =3
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3.1 STEREOTYPED MESSAGES (2)

Set m = 2, i.e. all polynomials have root zo modulo N?2. Define the collection
of seven polynomials:

N2, N2z, N?22, Nf(z), zN f(x), 1:2Nf(:p), f2(x)

Let X denote the bound and ¢;(z), ..., g7(x) denote the above collection. The
coefficient vectors of g;(xX) for 1 < i < 7, define the following lattice basis:

N2
N2X
N2X?
B=| N -c) 3Nm3X 3Nm X2 NX3
N(m3 - o)X 3Nm2X? 3Nm X3 NXx*
N(n3 - o)X? 3NmX? 3NmiX*  NX°

(m? —¢)? 6(m? - c)m%X (6(m% —co)my + 9m‘1‘)X2 (ZOm? —20)X3 lSm%X4 6m X X
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3.1 STEREOTYPED MESSAGES (3)

Lattice basis B spans a 7-dimensional lattice A with det(A) = |det(B)| = N9 X?L.
Using the enabling condition, one obtains

NOX2l « N2T ., N,

One recovers the lower 5/21 ~ 0.238-fraction of m in polynomial time. Theorem
application yields a superior bound for the bits that one can recover at the cost

of an increased running time.

Stereotyped Messages

Let ¢ = m® mod N with constant e. Assume one knows some m; satisfying
m —my < cN+ for some ¢ > 1. Then m can be found in time O(clog® N).

Cryptanalysis Applications + Standard RSA coeoooo0o00000 Page 38 / 71
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3.1 FACTORING WITH KNOWN BITS (1)

Let N = pq be an RSA modulus, w.l.o.g. p > ¢ and therefore p > Nz. Assume

that one knows a good approximation p; of p up to an additive term of size at
1 . .

most N5, i.e., there exists some p; such that

po=p—p1 for py< Ns.

Problem Description

Given: N = pq, p > Nz and some p1 satisfying p — p; < N3
Polynomial: f(z) = z + p; mod p with root zp =p — p1 < N3
Parameters: degree § = 1, divisor size 3 = }
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3.1 FACTORING WITH KNOWN BITS (2)

Set m = 2, i.e. all polynomials have root o modulo p?. Define the collection of
five polynomials:

N?, Nf(x), fA(2), af*(2), 2*f*(x).

Let X denote the bound and g;(x),..., gs(z) denote the above collection. The
coefficient vectors of g;(zX) for 1 < i < 5, define the following lattice basis:

N2
Npi NX
B=| p? 2pX X°
X 2pxt X
rx* 2px’ x*

Lattice basis B spans a 5-dimensional lattice with det(A) = | det(B)| = N3X10.
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3.1 FACTORING WITH KNOWN BITS (3)

Using the enabling condition, one obtains
N3X10 <« N225 = N5 X < N.

LLL reduction runs on lattice basis B in time O(log® N). Using above Theorem,
one may increase the bound N at the cost of an increased run time.

Factoring with Known Bits

Let N be composite with divisor p > N”. Assume one is given p; satisfying
p—p1 < cN® for some ¢ > 1. Then p can be found in time O(clog®* V).

Let N = pq be an RSA modulus with p > ¢, i.e. 3 = 3. It implies that N can be
factored in polynomial time given half of the bits of p, i.e. p — p; < Ni< p%.
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3.1 SMALL PRIVATE KEY ATTACK (1)

Let N = pq be an RSA modulus with ¢(N) = (p—1)(¢—1) and ed = 1 mod ¢(N).
Assume that e is approximately of size N. Wiener? discovered that when d <
%N%, N can be factored via continued fractions. One has

ed=1+k(N+1-p—¢q) — ed=1—k(p+q—1)+EkN.

Problem Description

Given: N = pq and e satisfying ed = 1 mod ¢(N) with d < Ni
Polynomial: f(u,z) = u+xN mod e with root (ug,z0) = (1 —k(p+q—1),k)
Parameters: |zo| = |k| < dand |up| < k(p+qg—1) < 3dN'z

9Cryptanalysis of Short RSA Secret Exponents
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3.1 SMALL PRIVATE KEY ATTACK (2)

Setm = 1, i.e. all polynomials have root (ug, x¢o) modulo e. Define the collection
of two polynomials:

gl(uax) = ez, gQ(U)‘T) = f(u,a:)

Let U, X denote the bounds and the integer linear combinations of the coeffi-
cient vectors of g1 (uU, X)) and go(uU, 2X) form the following lattice basis:

eX
B:(NX U)'

Lattice basis B spans a 2-dimensional lattice with det(A) = |det(B)| = eUX.
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3.1 SMALL PRIVATE KEY ATTACK (3)

Using the enabling condition, one obtains
eUX ~ X2N3 <2~ N2 — X < Ni.

The LLL-algorithm runs on lattice basis B in time O(log! ¢ N). Coppersmith’s
method guarantees only that one can find a polynomial

h(u,x) = hou + hix

from an LLL-reduced shortest lattice vector such that h(ug,z¢) = 0. It remains
to recover the root (ug, o). One can conclude from h(ug, z9) = 0 that

hQUO = —hl:Iio
Since ged(ug, o) = 1, it follows that zg = |ho| and ug = —|hy].
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3.1 SMALL PRIVATE KEY ATTACK (4)

Boneh and Durfee? further improve on Wiener's Ni-bound. They focus on the
same modular equation using more shift polynomials.

Problem Description

Given: N = pq and e satisfying ed = 1 mod ¢(NN) with d < N©-263
Polynomial: f(u,z) = u+xN mod e with root (ug,z0) = (1 —k(p+q—1),k)
Parameters: |zo| = |k| <dand |ug| < k(p+¢—1) < 3dN2

Setm =4anddenoted < X = N, U ~ XY = N2+, All the polynomials have
root (ug, zo) modulo e*.

9Cryptanalysis of RSA with Private Key d Less than N?-292

Mengce Zheng Lattice-Based Cryptanalysis « Cryptanalysis Applications « Standard RSA cooooooooeoo



3.1 SMALL PRIVATE KEY ATTACK (5)

One takes the powers of fi(u,z) for i = 3,4 and in addition the polynomial
yf*(u, ). That is, there are now 10 polynomials:

4,3 3,2 2, ¢2 3 4,4 3.3 2.2 ¢2 3 4 4
€$7exf7e$f7ef’€$76xf7exf’€xf7f7yf‘

Let U, X denote the bounds and the integer linear combinations of the coeffi-
cient vectors of g;(uU, zX) for 1 <4 < 10 form the following lattice basis B:

e4 X3
SNx3 SUx?
2N2x3 2.2nUx? 2U2x
eN3X3  3eN2UX2 3eNU2X eU3
x4
Snx4 SUx3
ANZxt 22NUX3 S2U2x?
eN3x* 3eNZUux3 3enU2x2 eU3X
N4x4 aN3ux3 1082 U2x2 aNU3X lad
N4x3 aN3Ux? 1082U2x N3 -N4*Ux3  —aN3u2x2 —1won?udx -aNu3 Uty
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3.1 SMALL PRIVATE KEY ATTACK (6)

Lattice basis B spans a 10-dimensional lattice A and its determinant is det(A) =
|det(B)| = e*U? X0y Using the enabling condition, one obtains

19 2o
620U20X16Y < e4~10 Né < N7 a~ NO.Z()S.

One finds polynomials with root (x¢, o) over the integers in polynomial time
via lattice reduction. The bound is finally improved to N0-292

Small Private Key Attack

Let N be an RSA modulus with ed = 1 mod ¢(N), e ~ N and d < N©2%2,
Then N can be factored in time O(logf*¢ N) for any € > 0.

One computes yo = p+ ¢ — 1 from two polynomials via resultant computation.

Mengce Zheng Lattice-Based Cryptanalysis « Cryptanalysis Applications ¢ Standard RSA oocooocococooooe Page 47 [ 71



3.2. CuBIC PELL RSA

Basic Information

e A new RSA variant introduced by Murru and Saettone®
e Based on cubic Pell equation z3 4 ry3 4+ r223 — 3rzyz =1
e Use a novel group with a non-standard product ® on tuple (m,ms)

9A Novel RSA-Like Cryptosystem Based on a Generalization of the Rédei Rational Functions

Key Information

e Public/private keys are (N, e, r)/(d, p, q) with N = pq
® Use ed =1 mod ¢(N) for (N) = (p?> +p+1)(¢*> +q+ 1)
* Key equation is ed — k(p? + p+1)(¢*> + ¢ + 1) = 1 for an unknown &
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3.2 SMALL PRIVATE KEY ATTACK (1)

Zheng et al.9 investigate the potential small private key attack and show it is
vulnerable for d < N2-V2,

Bivariate Modular Equation

Its key equation is ed = k((p+q)>+(N+1)(p+q)+N?—N+1)+1. Consider
the following bivariate polynomial f(x,y):

z(y?> 4+ ay +b)+1=0mod e

wherea = N +1and b = N2 — N + 1. Thus, (z*,5*) = (k,p + q) is the
modular root. We set the upper bounds to be X = 2N*t0-2 vy = 3Nz,

\ J

9Cryptanalysis of the RSA Variant Based on Cubic Pell Equation
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3.2 SMALL PRIVATE KEY ATTACK (2)

Let A(y) := y® + ay + b = y* + h(y) for h(y) := ay + b. The original polynomial
f(z,y) is rewritten to

fly) =xh(y) + 1=y + h(y)) + 1 = (zy® + 1) + zh(y).

Variable Relation

Lettlng B = ;vy2 + 1, we have f_({l?, Y, Z) =S xﬁ(y) The shift pOlynomials
9.k (%, y, 2) are defined as

gk (@Y, 2) = 2y [o(z,y, 2)e™F = a'y! (2 + ah(y))Fem "

for a fixed positive integer m and non-negative integers i, j, k.

\ J
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3.2 SMALL PRIVATE KEY ATTACK (3)

Shift Polynomials

We denote the set of shift polynomials by F := G U H for

g = {g[i,j,k](xvyvz) : (iajv k) € Ig}v
H = {g[i,j,k]('r?y7z) : (i7j7 k) < IH};
where the corresponding index set Z := Zg U 7y, is defined by

Zg :={(i,j,k) :i=0,....,m; =0,1; k=0,...,m — i},
I’H :{(Z,j,k)lzo,j:2,,LTkJ+1, k:()’""m}’

for a parameter 0 < 7 < 1 to be optimized later.

\ J
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3.2 SMALL PRIVATE KEY ATTACK (4)

Coefficient vectors of scaled shift polynomials g; ; ) (¢ X,yY, 2Z) generate the
basis matrix.

Coefficient Vectors

The polynomial order <, is defined as gj; ; i <p gjir 7.1 if
e i +k<i+EK;or
e j+k=4+kandi<;or
e =i, k=FkKandj<j.
The monomial order <., is defined as ziy’ 2% <., 27'y7'2¥ in a similar way.

\ J

Notice that we shall substitute each occurrence of zy? by the term z — 1.
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3.2 SMALL PRIVATE KEY ATTACK

(5)

Integer Lattice

Regarding derived coefficient vectors as b; for i = 1, ...,w and construct
w
A= {Zzlb’ P2 EZ}.
i=1

The lattice dimension w is calculated as

2
w= Z 1= —;TmQ—i-o(mQ).
(i,4,k)ET
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3.2.

SMALL PRIVATE KEY ATTACK

(6)

A toy example of the lattice basis matrix for m = 2 and 7 = 1 is shown:

Mengce Zheng

z yz ¥’z X2

Xy Xz xyz z vz

8[0.0,0]
8j0.1,01

ZZE

eY?z

e2x?

Lattice-Based Cryptanalysis «

Cryptanalysis Applications ¢

New RSA Variant 000000®0000000000
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3.2 SMALL PRIVATE KEY ATTACK (7)

Lattice Determinant

A lower triangular basis matrix only requires multiplication of the diagonal
terms for computing the determinant:

det(A) = et X"XY™Y Zn7,
We obtain the respective exponents

1
ne = = (17 +4)m> + o(m?), nx = gm?’ + o(m?),
2

I

1
ny = —m? 4+ o(m?3), ng = 5(7' + 1)m3 + o(m?).

>|
|\

+ New RSA Variant 0000000®000000000 Page 55 / 71
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3.2 SMALL PRIVATE KEY ATTACK (8)

Attack Bound

The solving condition det(A) < R¥ with R = ¢™ yields

Nane+(a+(5—2)nx+%ny+(a+6—1)nz < Nomw.

Simplify the exponents over N and obtain 72 + (45 — 4)7 +4a + 85 — 12 < 0.

By setting = = 2 — 24, it further leads to § < 2 — \/a. Note that we must
ensure 0 < 7 =2 —20 <1 and finally have

9 5 « 9 15
— < — - — — = L —_—
0 <2 \/aforl_oz<4, or 5<4 3fOI‘4_a<4
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3.2 GENERALIZED CRYPTANALYSIS (1)

Kang and Zheng? present generalized cryptanalysis of cubic Pell RSA with its
generalized key equation eu — (p?> + p+ 1)(¢> + ¢ + 1)v = w.

Trivariate Modular Equation

We have v(p+¢q)? + (N +1)(p+q)v+ (N? = N +1)v+w = 0 mod e. Consider
the following trivariate polynomial:

flx,y,2) = a:y2 + axy + bxr + z,

wherea =N +1and b= N? — N + 1. Thus, (z*,y*, 2*) = (v, p + ¢, w) is the
modular root. Set upper bounds to be X = 2N5+9-2 Y = 3Nz, Z = N7.

.

9Generalized Cryptanalysis of Cubic Pell RSA

Mengce Zheng Lattice-Based Cryptanalysis « Cryptanalysis Applications « New RSA Variant ©00000000®0000000 Page 57 | 71



3.2 GENERALIZED CRYPTANALYSIS (2)

Monomial Sets

Let m be a positive integer and ¢ be a non-negative integer to be optimized
later. For 0 < k < m, we define the following monomial set

My = U {xilyiﬁjzi?’ . 21y"22% is a monomial of f(z,y, 2)™
0<j<2+t
whyizzis
(zy?)*

We can obtain an accurate description of i1, i, i3 for each 2?1322 € Mj,;:

and is a monomial of f(x,y, z)m‘k}.

iW=k,...,m, i9 =2k,...,2i1 +2+t, i3=m — 3.

\ J
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3.2. GENERALIZED CRYPTANALYSIS

(3)

Shift Polynomials

We define the following shift polynomials for zi1y%22% € M;, \ My 1:

xily’izzi:’, B
hoin insis (%, Y, 2) = Wf(l‘,yy z)kem .

Furthermore, shift polynomials can be divided into two polynomial sets:
Ohin o i (z,y,2) = mil_kyi2_2kzi3f($a Y, Z)kem_ka

k=0,...m, i1 =Fk,...,m, 19 =2k, 2k + 1, i3 =m — iy,
Hk,i1,i2,i3 (l‘,y,Z) = yi2_2kzigf(xaya Z)k mk

€ )

k=0,..m,11=Fk, io=2k+2,...,201+2+1¢, i3 =m — i7.

J
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3.2 GENERALIZED CRYPTANALYSIS (4)

Coefficient vectors of Gy, ;, 4,.is (v X, yY, 2Z) and Hy i, 4, 45 (¢ X, yY, 2Z), with X, Y,
and Z denoting the upper bounds generate the basis matrix.

Coefficient Vectors

Concerning row order, precedence is given to any Gy, ;, i,.is OVerany M ;. i, is-
The polynomial order <, is established as (k, i1, i2,i3) <p (K, 1}, 5, 5) if

o kL <k;or

e k=K andi; <if;or

o k=Fk, i =1 and iy < i}; or

L4 k:k/, ilzi/l, Z'széandi3<ig.
The monomial order <., is defined as z/y™22% <, z/1y%2% in a similar way.

.
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3.2 GENERALIZED CRYPTANALYSIS (5)

Integer Lattice

Regarding derived coefficient vectors as b; for i = 1,...,w and construct

= {izﬂ_}; S 75 GZ}.
=1

The lattice dimension w is calculated as

m m 2k+1 m—ig m k  2i1+24+t m—ig
ZZZ Yoo+ d 3 Y N 1=m+1)(m+t+3).
k=0 i1 =k ip=2k iz=m—i1 k=0 i1=Fk io=2k+2 iz=m—i1
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3.2.

A toy example of the lattice basis matrix for m = 2 and ¢ = 0 is shown:

Mengce Zheng

GENERALIZED CRYPTANALYSIS

[ 02 e e @ 2y wte wie B P A B P

ayts

Y

2,6
a

Gooo2|4%¢

Glo.1,2 Y Z%*

Gloon xze

Gloi XY Ze?

Gposo X2e?
Gpoao X2ve

Gz XY?Ze

Gin XY*Ze

G220 - - - X2Y?%e
Giraao X2yt

Gpasal - S -
G250 X?y®

ooz vizie

Hpian

Hi200] -
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3.2 GENERALIZED CRYPTANALYSIS (7)

Lattice Determinant

A lower triangular basis matrix only requires multiplication of the diagonal
terms for computing the determinant:

det(A) = e X"XY™ 717

Letting ¢t = 7m with a real 7 > 0, we obtain w = (7 + 1)m? + o(m?) and

1
Ne (37 + 4)m> 4+ o(m?), nx = 6(3T+4)m3 + o(m?),

@IH@I»—‘

1
ny = (37’ +67’—|—4)m + o(m?), nZ:6(3T+2)m3-|—o(m3).
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3.2. GENERALIZED CRYPTANALYSIS

Attack Bound

\

The solving condition det(A) < R¥ with R = ¢™ yields

Nﬂne+(ﬁ+6—2)nx+%ny+’ynz < Nﬁmw.

Simplify the exponents over N and obtain

—372 4+ (6 — 67)7 + 12 — 48 — 4y
< .
67 + 8

By setting 7 = (2y/1+ 38 — 3y — 4)/3, it further leads to

0

(8)

J
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L, LIMITATIONS OF EXISTING STRATEGIES

Ryan? examines the problem of finding small solutions to systems of modular
multivariate polynomials.

e The main difficulty is shift polynomial selection stage
e Rely on heuristics: one crafts monomial sets and shifts by hand

e The manual design is time-consuming: new problem-specific
strategies often take years of work to improve bounds

e Existing multivariate Coppersmith bounds lag behind potential:
lattice dimensions can be huge and asymptotic analysis is hard

9Solving Multivariate Coppersmith Problems with Known Moduli
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L, MAIN CONTRIBUTIONS

This research develops automated algorithms to analyze shift polynomials, thus
reducing manual work.

Advantages

e Optimal shifts via Grobner bases: Provably find the best shift
polynomials from the polynomial ideal

e Graph-based monomial selection: Heuristically identify low-rank
sublattices by analyzing coefficients with a directed graph

e Symbolic precomputation: Precompute shift-polynomial data and use
polytope analysis to automatically determine asymptotic bounds

\ J

He conducts extensive evaluation on 14 standard Coppersmith problems, new
methods match or improve prior bounds and produce smaller lattices.
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L, SHIFT POLYNOMIAL SELECTION

Involved Steps

¢ Form ideal J generated by input polynomials (with known modulus)
e Compute a D-Grobner basis G of J under a weight monomial order

e For each monomial « in the finite superset of M, find g € G with
LM(g) | o, choose g with minimal leading coefficient, and set shift to
be g - (a/LM(g))

¢ This produces a set S of shift polynomials (support in monomial set
M) that is suitable and optimal

J

\

The lattice from these shifts is the optimal dual lattice for Coppersmith’s bound.
In practice, this lattice has the shortest possible basis vectors.
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L, GRAPH-BASED MONOMIAL SELECTION

Many shift polynomials are sparse, implying some lattice columns are zero.

Involved Steps

¢ Yield a dense sublattice: dropping these columns lowers rank with
little cost.

e Build a directed graph G: vertices are monomials in M, draw an edge
(a1 — ap) if f € S has LM(f) = a3 and a nonzero coefficient on ay

¢ Find a maximum-weight closure in G and select a subset Mg, ¢ M
(and Ssyp) with no outgoing edges, minimizing det(As,,, )/ IS

-

J

Exploiting sparsity helps bridge the gap between theoretical LLL bounds and
observed performance.

Mengce Zheng Lattice-Based Cryptanalysis * Recent Advances ocooeooo Page 68 / 71



&, SYMBOLIC PRECOMPUTATION

It presents a strategy based on symbolic precomputation of a set of shift poly-
nomials and extend this precomputed set to higher multiplicities.

Involved Steps

* Symbolically represent the problem: treat unknown constants as
variables and compute a generic ideal J and its shifts

e Compute the monomial set via a convex hull (a polytope) and use
Ehrhart polynomials to count monomials and bound lattice dimension

e Precompute shift polynomials for J, then specialize to each instance
by interpolation and avoid repeated expensive computations

e Substitute optimizing parameters and consider asymptotic behavior

\ J

It fully automates asymptotic Coppersmith analysis for multivariate systems.
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L, EVALUATION ON EXISTING PROBLEMS

This research test on 14 known multivariate Coppersmith instances.

Experimental Results

e Recovery Bounds: The provable (Grobner) strategy always matched or
improved the best-known root size bounds

e Lattice Dimension: The graph-based method often achieved the same
bounds with significantly smaller lattices

e Runtime: The precomputation strategy gave similar bounds and
lattice sizes with much faster solve times

e Asymptotic: Automated polytope analysis reproduced the strongest
known asymptotic exponents.
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&, FUTURE WORK

Recent advances introduces a suite of methods to automate multivariate Cop-
persmith attacks and achieve state-of-the-art results.

Remaining Challenges

e The heuristics still require parameter choices. E.g, selecting monomial
vertices in the polytope must be done manually

e The graph-based methods are ineffective against integer Coppersmith
problems and it requires further analysis

e How to calculate the determinant of Coppersmith lattices when that
are not full-rank

¢ |t does not capture the multi-step approaches, which construct
multiple Coppersmith lattices to gain partial information of roots

\ J
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