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Abstract. In this paper, we address the security evaluation issue of the
RSA cryptosystem with implicitly related private keys. We formulate the
attack scenario and propose a novel implicit-key attack using the lattice-
based method. When given public information (N1, e1), (N2, e2) and the
amount of shared bits of the private keys d1 and d2, one can conduct the
implicit-key attack to factor N1, N2 in polynomial time under a certain
condition. We show that the RSA cryptosystem is more insecure when
taking the implicitly related keys into consideration. The experimental
results are provided to verify the validity of our proposed attack.
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1 Introduction

The RSA cryptosystem [14] is the most attractive one in public key cryptography
and plays an important role in the field of cybersecurity. The main mathemat-
ical equation is ed ≡ 1 mod ϕ(N), where e, d,N and ϕ(N) are described as
follows. N = pq is the product of two large primes of the same bit-size. The
respective public and private keys e, d are also called public/encryption and pri-
vate/decryption exponents. ϕ(N) = (p − 1)(q − 1) is Euler’s totient function
of N . To encrypt an integer m, one computes c = me mod N . To decrypt a
ciphertext c, one needs to compute cd mod N .

The security of the RSA cryptosystem has been investigated in [1,12]. Since
Coppersmith [4] introduced the lattice-based method, its variations have been
widely used for attacking the RSA cryptosystem such as [2,5–7,10,16]. Among
the various attacks, the partial key exposure attack and the implicit factoring
problem are two attractive ones.

In 2005, Ernst et al. [7] presented several concrete attacks that work up to
full size exponents. This attack type was first studied by Boneh, Durfee, and
Frankel in [3]. In other words, partial key exposure attack can be seemed as the
problem of attacking RSA with an oracle providing explicit information about
d. In 2009, May and Ritzenhofen [13] proposed a new approach to factor RSA
modulus with an oracle providing implicit information about p. To be specific,
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for RSA moduli N1 = p1q1 and N2 = p2q2 with α-bit qi and p1, p2 share at least
t many least significant bits (LSBs), it has been proved that if t > 2(α + 2), one
can find q1 and q2. Thus, N1 and N2 can be factored easily. Other cases such as
shared most significant bits (MSBs), shared middle bits [8] and some improved
methods [15] were proposed afterwards.

Inspired by the partial key exposure attack and the implicit factoring prob-
lem with existing drawbacks, we concentrate on a weaker setting, where some
implicit information about the private keys is given. We informally formulate
the following scenario related to the implicit-key attack. Let (N1, e1, d1) and
(N2, e2, d2) be two different RSA key pairs with N1, N2 of the same bit-size.
Suppose we know some implicit information about the private keys, i.e. the
amount of shared MSBs and LSBs of d1 and d2. The goal is to factor N1 and N2

in polynomial time from the knowledge of the implicitly related private keys.
It is opposed to the previous cryptanalyses dealing with only one RSA key

pair. Our work can cover other similar works and make further improvements.
Once RSA instances are generated with imperfect randomness or backdoored
keys, one may encounter such attack scenario. Though such implicit-key attack
may not directly influence the security of the RSA cryptosystem. We consider
the following issues for which our theoretical study may be interesting. One is to
deeply disclose the vulnerability of RSA with weaker conditions. Moreover, we
want to investigate how one can further extend previous attacks, where partial
key exposure and implicit hint are combined.

We adapt the Jochemsz-May strategy [10] as a main mathematical tool to
solve the common root of multivariate equations. To achieve theoretical effects,
the lattice-based method relies on the following heuristic assumption. One can
obtain algebraically independent polynomials by the lattice-based method, and
then efficiently solve the common root by the Gröbner basis computation. This
heuristic assumption always holds in the simulated experiments like previous
works in the literature. We want to point out that the theoretical results stated
below are asymptotic since we require the dimension of the corresponding lattice
to be preferably large.

The rest of the paper is organized as follows. We provide the basic knowledge
of lattice reduction theory and the condition for finding the common root in
Sect. 2. In Sect. 3, we formulate the concrete attack scenario and present the
implicit-key attack. In Sect. 4, we provide the experimental results with more
details. Finally, concluding remarks are given in Sect. 5.

2 Preliminaries

In this section, we briefly introduce the LLL algorithm [11] and Coppersmith’s
techniques (also stated as Howgrave-Graham’s lemma [9]). Then, we provide the
condition for finding the common root and simply mention the running time.
One can refer to [12] for more details about the lattice-based method.

A lattice L spanned by linearly independent vectors b1, . . . , bm ∈ R
n is the

set of all their integer linear combinations. Thus, the lattice L can be written
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as L(b1, . . . , bm) = {∑m
i=1 zibi|zi ∈ Z}. For i = 1, . . . , m, we regard each basis

vector bi as a row vector, which generates so-called m × n basis matrix B. The
determinant of L is calculated as det(L) =

√
det(BBT ). We usually consider a

full-rank lattice for m = n and hence det(L) = |det(B)|.
The LLL algorithm proposed by Lenstra, Lenstra, and Lovász [11] is prac-

tically used for finding approximately non-zero short lattice vectors due to its
efficient running results. We provide the following substratal lemma about its
outputs.

Lemma 1. Let L be a lattice spanned by a basis (b1, b2, . . . , bm). The LLL algo-
rithm outputs a reduced basis (v1,v2, . . . ,vm) in polynomial time. For 1 ≤ i ≤ m,
the first i many reduced basis vectors satisfy

‖v1‖, ‖v2‖, . . . , ‖vi‖ ≤ 2
m(m−1)

4(m+1−i) det(L)
1

m+1−i .

The following lemma presented by Howgrave-Graham [9] gives a criterion
for judging whether the desired small root of a modular equation is also a root
over Z. To a given polynomial g(x1, . . . , xn) =

∑
ai1,...,inxi1

1 · · · xin
n , its norm is

defined as ‖g(x1, . . . , xn)‖2 :=
∑ |ai1,...,in |2.

Lemma 2. Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an n-variate integer polynomial,
which is a sum of at most m monomials. Suppose that (1) g(x̃1, . . . , x̃n) ≡ 0 mod
R, where |x̃1| < X1, . . . , |x̃n| < Xn, and (2) ‖g(x1X1, . . . , xnXn)‖ < R/

√
m.

Then g(x̃1, . . . , x̃n) = 0 holds over the integers.

Applying the lattice-based method, we can combine Lemma 1 with Lemma 2
to solve modular/integer polynomials. Once having the first l reduced vectors,

one can solve the unknown variables for 2
m(m−1)
4(m+1−l) det(L)

1
m+1−l < R/

√
m, which

can be further reduced to det(L) ≤ Rm−ε with an error term ε, or a simpli-
fied condition det(L) < Rm. We can construct an upper/lower triangular basis
matrix by the lattice-based method. The lattice determinant can be calculated
as det(L) = RuR

∏n
i=1 Xui

i , where ui denotes the exponent sum of each Xi or
R that appear on the diagonal in the corresponding basis matrix. Hence, the
condition det(L) < Rm can be rewritten as RuR

∏n
i=1 Xui

i < Rm.
We sketch the lattice-based method and derive the crucial condition for find-

ing small roots of integer polynomials. Lattice-based attacks using Coppersmith’s
techniques start with an integer/modular equation in some unknown parameters
of given RSA instances. To carry out the proposed implicit-key attack, we aim
to find a suitable root of a five-variate integer polynomial f(x1, x2, x3, x4, x5).

First, we need to estimate the upper bounds Xi as mentioned in Lemma 2.
Moreover, we define the largest size of an individual term in f(x1, x2, x3, x4, x5)
as X∞ = ‖f(x1X1, x2X2, x3X3, x4X4, x5X5)‖∞ that is related to the definition
of a sufficient large modulus R. Then, a lattice basis matrix is constructed using
the shift polynomials defined in two monomial sets S and T . Based on the
Jochemsz-May strategy, the solvable condition reduces to Xs1

1 Xs2
2 Xs3

3 Xs4
4 Xs5

5 <
X

sg∞ for sj =
∑

T\S ij and sg = |S| in our proposed implicit-key attack. More
details about the concrete lattice construction for a given specific polynomial
will be described in Sect. 3.



Implicit-Key Attack on the RSA Cryptosystem 357

Under the above condition, we can compute the first l reduced basis vectors
using the LLL algorithm and then obtain the equations f1, . . . , fl that all share
the same root over the integers. Next, we use the Gröbner basis computation to
extract the common root. The running time depends on the time of reducing the
basis matrix and extracting the common root. For conducting the implicit-key
attack on concrete RSA instances, both of them can be done in polynomial time.

3 Implicit-Key Attack

We describe the implicit-key attack by providing the concrete construction for
two RSA instances (N1, e1, d1) and (N2, e2, d2). Consider a general case when
e1, e2 are of arbitrary bit-size and d1, d2 share some MSBs and LSBs leaving one
different block in the middle. Unless otherwise noted, N in this paper denotes
the greater one of N1, N2 and log2 N denotes their bit-size (suppose two RSA
moduli are of the same bit-size). Our main result is stated as follows.

Theorem 1. Let N1 = p1q1, N2 = p2q2 be two different RSA moduli of the same
bit-size, and p1, q1, p2, q2 be primes of the same bit-size. Let e1, d1, e2, d2 satisfy
e1d1 ≡ 1 mod ϕ(N1) and e2d2 ≡ 1 mod ϕ(N2), such that e1 = Nα1 , e2 = Nα2

and d1, d2 ≈ N δ. Suppose that d1 and d2 share β1 log2 N MSBs and β2 log2 N
LSBs. Then N1, N2 can be factored in polynomial time if

δ <
(α + β − 1)(1 + 10τ + 20τ2) − 10τ2 − 30τ3

4 + 30τ + 40τ2
− α

2
+ 1,

where α = α1 + α2, β = β1 + β2 and τ is the only positive root of

120x4 + 180x3 + (86 − 20α − 20β)x2 + (16 − 8α − 8β)x − α − β + 1 = 0.

Proof. From the main equation of the RSA cryptosystem, namely ed ≡ 1 mod
ϕ(N), we have e1d1 = k1(N1+1−p1−q1)+1 and e2d2 = k2(N2+1−p2−q2)+1
for two unknown positive integers k1 and k2. Multiplying the above equations
by e2 and e1 respectively and then subtracting, we have

e1e2(d1 − d2) = e2k1(N1 + 1 − p1 − q1) + e2 − e1k2(N2 + 1 − p2 − q2) − e1. (1)

Consider we know d1, d2 ≈ N δ sharing β1 log2 N MSBs and β2 log2 N LSBs.
Hence, it implies that d1 = dMSB2(δ−β1) log2 N + d̄12β2 log2 N + dLSB and d2 =
dMSB2(δ−β1) log2 N + d̄22β2 log2 N + dLSB, where dMSB and dLSB are shared MSBs
and LSBs, d̄1 and d̄2 are different values in the middle block. Substituting d1
and d2 into (1), it can be rewritten as

e1e2(d̄2 − d̄1)Nβ2 + e2k1(N1 +1− p1 − q1)− e1k2(N2 +1− p2 − q2)+ e2 − e1 = 0.

The known values are a1 = e1e2N
β2 , a2 = e2(N1 + 1), a3 = −e1(N2 + 1),

a4 = −e2, a5 = e1, and a6 = e2 − e1. The unknown variables are x1 = d̄2 − d̄1,
x2 = k1, x3 = k2, x4 = p1 + q1, and x5 = p2 + q2. We aim to find a suitable root
of f(x1, x2, x3, x4, x5) := a1x1 + a2x2 + a3x3 + a4x2x4 + a5x3x5 + a6.
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If e1 and e2 have a nontrivial great common divisor, one can do the division
to make the polynomial irreducible. Suppose we know e1 = Nα1 and e2 = Nα2 .
The upper bounds Xi are estimated as follows. X1 = N δ−β for β = β1 + β2,
X2 = Nα1+δ−1, X3 = Nα2+δ−1, and X4 = X5 = N1/2. The maximal coefficient
X∞ can be easily calculated as X∞ ≈ Nα+δ for α = α1 + α2.

We follow the Jochemsz-May strategy [10] and use extra shifts of x4 and
x5 for solving f(x1, x2, x3, x4, x5). Define two monomial sets S and T for two
integers s ≥ 1 and t ≥ 0.

S =
⋃

0≤j4,j5≤t

{
xi1
1 xi2

2 xi3
3 xi4+j4

4 xi5+j5
5

∣
∣xi1

1 xi2
2 xi3

3 xi4
4 xi5

5 is a monomial of fs−1
}

,

T =
⋃

0≤j4,j5≤t

{
xi1
1 xi2

2 xi3
3 xi4+j4

4 xi5+j5
5

∣
∣xi1

1 xi2
2 xi3

3 xi4
4 xi5

5 is a monomial of fs
}

.

Through the expansion of fs−1 and fs, we know the relation of xi1
1 xi2

2 xi3
3 xi4

4 xi5
5

in S and T to their exponents i1, i2, i3, i4, i5, respectively.
Let R = X∞Xs−1

1 Xs−1
2 Xs−1

3 Xs−1+t
4 Xs−1+t

5 , we define f ′ = a−1
6 f mod R

and the shift polynomials below,

gi1,i2,i3,i4,i5 : xi1
1 xi2

2 xi3
3 xi4

4 xi5
5 f ′Xs−1−i1

1 Xs−1−i2
2 Xs−1−i3

3 Xs−1+t−i4
4 Xs−1+t−i5

5 ,

for xi1
1 xi2

2 xi3
3 xi4

4 xi5
5 ∈ S,

g′
i1,i2,i3,i4,i5

: xi1
1 xi2

2 xi3
3 xi4

4 xi5
5 R,

for xi1
1 xi2

2 xi3
3 xi4

4 xi5
5 ∈ T\S.

The lattice L is constructed by the coefficient vectors of gi1,i2,i3,i4,i5 and
g′

i1,i2,i3,i4,i5
with xiXi substituting for each xi. We have uR = |T\S|, uj =∑

T ij and m = |T |. More precisely, the diagonal elements of gi1,i2,i3,i4,i5 is
equal to R/X∞ and uj =

∑
S ij +

∑
T\S ij . So RuR

∏5
i=1 Xui

i < Rm implies

RuR(R/X∞)sg
∏5

i=1 Xsi
i < RuR+sg for sj =

∑
T\S ij and sg = |S|, which can

be reduced to
Xs1

1 Xs2
2 Xs3

3 Xs4
4 Xs5

5 < Xsg∞ . (2)

We now calculate sj for j = 1, . . . , 5 and sg by above definitions. Taking
t = τs for τ ≥ 0 and omitting the lower term for simplicity, we obtain

sg = s1 =
1

120
(1 + 10τ + 20τ2)s5, s2 = s3 =

1
120

(2 + 15τ + 20τ2)s5,

s4 = s5 =
1

120
(1 + 10τ + 30τ2 + 30τ3)s5.

We substitute the values of Xj , sj and X∞, sg into the condition (2) and obtain
1+10τ +30τ2 +30τ3 +(1+10τ +20τ2)(δ −β)+ (2+15τ +20τ2)(α+2δ − 2) <
(1 + 10τ + 20τ2)(α + δ). It leads to

δ <
(α + β − 1)(1 + 10τ + 20τ2) − 10τ2 − 30τ3

4 + 30τ + 40τ2
− α

2
+ 1.
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As α and β are already given, the value of the right side can be maximized by
an optimal value of τ . It is easy to see that τ is the only positive root of

120x4 + 180x3 + (86 − 20α − 20β)x2 + (16 − 8α − 8β)x − α − β + 1 = 0.

We can obtain four integer polynomials f1, f2, f3 and f4 apart from f by the
proposed implicit-key attack. Moreover, f, f1, f2, f3 and f4 share the common
root (d̄2 − d̄1, k1, k2, p1 + q1, p2 + q2) over the integers. Thus, we can extract
p1 + q1 and p2 + q2 that directly lead to the factorization of N1 and N2. 	


If e1 and e2 are of full bit-size, i.e. α = 2, we immediately know τ is the only
positive root of 120x4 + 180x3 + (46 − 20β)x2 − 8βx − β − 1 = 0. Therefore, we
show that N1, N2 can be factored in polynomial time for β = β1 + β2 if

δ <
(β + 1)(1 + 10τ + 20τ2) − 10τ2 − 30τ3

4 + 30τ + 40τ2
. (3)

We illustrate the above condition (3) with respect to various β’s in Fig. 1. It is
oblivious that we achieve higher insecure bound on δ as β increases, which means
that the RSA cryptosystem with implicitly related keys is more vulnerable.

Fig. 1. The comparison of previous result (i.e. δ < δBD) and ours (i.e. δ < δZH). The
gray region shows our asymptotic improvement using the proposed implicit-key attack.

4 Experimental Results

To achieve the asymptotic bound on δ, the parameter τ = t/s should be less than
0.2 from our theoretical observation. For the smallest positive integer t = 1, s
should be at least 6. Therefore, the dimension of the corresponding lattice will be
m = 966, which seems impossible for our simulated experimental environment.
Thus, we always choose t = 0 (i.e. τ = 0) in the simulated numerical experiments.

The experiments were carried out by SageMath under Windows 10 running
on a laptop with Intel Core i7-8550U CPU 1.80 GHz. The numbers for gener-
ating the parameters of two RSA instances were chosen at random. During the



360 M. Zheng and H. Hu

experiments, we collected much more polynomials satisfying our requirement
and extracted the common root by the Gröbner basis computation.

We would generate 1024-bit moduli in the experiments and all the public
exponents appeared are near full bit-size for simplicity. The δt-column provides
the theoretical bound on δ for fixed β1 and β2 (with τ = 0). The δe-column
provides the experimental bound on δ for the same β1, β2 and log2 N = 1024 in
distinct lattice settings. We denote the dimension of the corresponding lattice by
m and the running time of the proposed attack is denoted by Time in seconds.

For given two distinct 1024-bit moduli and d1, d2 sharing some MSBs and
LSBs, we choose s = 1, 2, 3 and t = 0 to construct the lattices. Hence, we need to
reduce 6-dimensional, 21-dimensional and 56-dimensional lattices using the LLL
algorithm. The results of the comparison of the theoretical and experimental
insecure bounds are showed in Table 1.

Table 1. The theoretical and experimental results of the proposed implicit-key attack

log2 N = 1024 s = 1, m = 6 s = 2, m = 21 s = 3, m = 56

β1 β2 δt δe Time δe Time δe Time

0.043 0.043 0.271 0.259 0.004 0.264 0.623 0.270 47.59

0.064 0.101 0.291 0.280 0.004 0.286 0.621 0.291 47.17

0.107 0.142 0.312 0.300 0.004 0.307 0.682 0.311 37.23

0.150 0.150 0.325 0.315 0.005 0.321 0.522 0.325 32.02

In each experiment, we collected sufficient polynomials sharing the common
root over the integers. Then we put several equations into the Gröbner basis
computation and finally obtained the correct values of p1 + q1 and p2 + q2,
which lead to the factorization of N1 and N2, respectively. If the Gröbner basis
computation did not directly output the desired root, we would first calculate
the value of x3 and then extract the solution of the remaining variables. As the
lattice dimension gets larger, the experimental insecure bound becomes higher
and the running time gets longer. From Table 1, we observe that s = 3 is already
enough for performing the implicit-key attack since the experimental result is
very close to the theoretical bound.

5 Concluding Remarks

In this paper, we focus on a new attack scenario concerning implicitly related
private keys. Our goal is to factor RSA moduli using the implicit information
about the related keys. We propose the implicit-key attack based on Copper-
smith’s techniques, which is applied for solving modular/integer polynomials as
a powerful tool.

The proposed implicit-key attack can reveal the vulnerability of the RSA
cryptosystem with implicitly related keys. We further verify the validity of the
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proposed attack by several numerical experiments. We would like to extend the
implicit-key attack for an arbitrary number n of unknown variables. However, it
seems less efficient as n gets greater since the running time is exponential in n.
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