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Abstract. In this paper, we address the implicit related-key factoriza-
tion problem on the RSA cryptosystem. Informally, we investigate under
what condition it is possible to efficiently factor RSA moduli in poly-
nomial time given the implicit information of related private keys. We
propose lattice-based attacks using Coppersmith’s techniques. We first
analyze the special case given two RSA instances with known amounts of
shared most significant bits (MSBs) and least significant bits (LSBs) of
unknown related private keys. Subsequently a generic attack is proposed
using a heuristic lattice construction when given more RSA instances.
Furthermore, we conduct numerical experiments to verify the validity of
the proposed attacks.
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1 Introduction

The RSA public-key cryptosystem [18] plays an important role in the area of
information security due to its simplicity and popularity. Its key equation is
ed ≡ 1 mod ϕ(N), where N , e, d and ϕ(N) are defined as follows. N = pq is
the product of two large primes of the same bit-size. e, d denote the public and
private keys, which are also called the public/encryption and private/decryption
exponents. ϕ(N) = (p − 1)(q − 1) is Euler’s totient function. One computes c =
me mod N and cd mod N for encryption and decryption operations, respectively.

In 1996, Coppersmith [4,5] made a significant breakthrough based on finding
small roots of modular and integer polynomial equations. The fundamental works
proposed novel and advanced lattice-based attacks on RSA. The main method
is known as Coppersmith’s techniques [6] and has been widely applied in the
cryptanalytic field of RSA. Many researchers have proposed several effective
attacks such as [1,7–10,15,21] etc. Among them, the partial key exposure attack
has been extensively studied as an active attack scenario.

In 1998, Boneh et al. [2] proposed several attacks on RSA given a fraction of
the private key bits with small public exponent e. The attacks employed some
known most significant bits (MSBs) or least significant bits (LSBs) of d. In 2005,
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Ernst et al. [10] presented improved lattice-based attacks that work up to full
size exponents under a heuristic assumption. In our opinion, partial key exposure
attack can be reduced to the problem of factoring RSA modulus with an oracle
outputting some explicit information of d.

In 2009, May and Ritzenhofen [16] proposed the implicit factorization prob-
lem, which aims to factor RSA moduli with an oracle providing implicit infor-
mation about the amount of shared LSBs of the primes. It is mainly considered
for the malicious generation of RSA moduli like the construction of backdoor
RSA moduli. Later, Sarkar and Maitra [19] proposed a better approach based
on solving the approximate common divisor problem.

Inspired by the above attacks, we raise an interesting hybrid problem that
aims to efficiently factor RSA moduli given some implicit information about the
related private keys. We herein present the description of the implicit related-key
factorization problem as follows. Let (N1, e1, d1), . . . , (Nn, en, dn) be n distinct
key pairs, where N1, . . . , Nn are of the same bit-size and the prime factors are
also all of the same bit-size. Given the implicit information that certain portions
of the bit pattern in private keys d1, . . . , dn are common, under what condition is
it possible to efficiently factor N1, . . . , Nn. In this sense, the implicit factorization
problem [16] can be refined into the implicit related-prime factorization problem
accordingly.

There are several situations to use many RSA instances in practice like [20].
Once such RSA instances are generated with imperfect randomness or mali-
cious backdoor keys, one may encounter the implicit related-key factorization
problem. Our motivations come from two aspects. Mainly from the theoretical
view, we study a new problem combing two existing attacks, which may further
disclose the vulnerability of RSA with implicit information and enrich lattice-
based cryptanalyses in the literature. Practically, side channel attacks may not
give explicit information as expected. Instead, one may know the amounts of
shared MSBs and LSBs of the private keys as some implicit information. The
users’ misuses with certain repeated bit patterns in the private keys may also
lead to this problem.

We formulate the implicit related-key factorization problem with several RSA
instances clearly. Given n key pairs of RSA parameters (Ni, ei, di) for 1 ≤ i ≤ n.
We consider the full size case when ei ≈ N for N denoting an integer of the same
bit-size as Ni for simplicity. Besides, we assume di ≈ N δ share certain MSBs
and LSBs like dj = di + djiD for 1 ≤ i < j ≤ n, where D denotes the bit-length
of shared LSBs-block and dji denotes the difference between every two unknown
middle blocks with |D| ≈ Nγ and |dji| ≈ Nβ .

We follow Coppersmith’s techniques [6] to handle the implicit related-key fac-
torization problem. In addition, we adapt two subtle lattice techniques, namely
the splitting technique and the linearization technique. Our attacks rely on a
heuristic assumption, which works well in the literature. The assumption says
that algebraically independent polynomials can be obtained by the lattice-based
attacks and the common root can be efficiently extracted by the Gröbner basis
computation [3].
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Our main result is stated in Proposition 1, which will be proven in Sect. 3.
We want to point out that the theoretical result is asymptotic since the corre-
sponding lattice dimension is required preferably large.

Proposition 1. Let N1 = p1q1 and N2 = p2q2 be given two RSA moduli
of the same bit-size, where p1, q1, p2, q2 are large primes of the same bit-size.
Let e1, d1, e2, d2 be some integers satisfying e1d1 ≡ 1 mod (p1 − 1)(q1 − 1) and
e2d2 ≡ 1 mod (p2 − 1)(q2 − 1) such that e1 ≈ e2 ≈ N and d1 ≈ d2 ≈ N δ. Given
the implicit information that d2 = d1 + d21D for |d21| ≈ Nβ. Then N1 and N2

can be factored in polynomial time if

δ <
25 − 16β − √

177 − 96β

32
.

The rest of the paper is organized as follows. We provide basic knowledge
of Coppersmith’s techniques and Gaussian heuristic in Sect. 2. In Sect. 3, we
propose a lattice-based attack for given two instances and further develop a
notable lattice construction to analyze the case of n instances. We verify the
validity of the proposed attacks by computer experiments in Sect. 4. Finally,
concluding remarks are given in Sect. 5.

2 Preliminaries

In this section, we first briefly introduce lattice, the LLL reduction algorithm [14]
and Coppersmith’s techniques [6]. Then we give a rough condition for finding
the small roots of modular polynomial equations. We also briefly describe the
splitting technique [17] based on the Gaussian heuristic.

A lattice L spanned by linearly independent vectors b1, . . . , bm ∈ R
n is the

set of their integer linear combinations, which can be denoted by

L(b1, . . . , bm) =

{
m∑

i=1

zibi : zi ∈ Z

}
.

The basis vectors derive a basis matrix B by regarding each bi as row (or column)
vectors. The determinant of L is calculated as det(L) =

√
det(BBT). The rank

of L is m and we always consider a full-rank lattice for m = n. Thus, we have
det(L) = |det(B)|.

The LLL algorithm [14] is practically used for computing approximately short
lattice vectors due to its efficient running outputs. We provide the following
substratal lemma, whose proof refers to [15].

Lemma 1. Let L be a lattice spanned by basis vectors (b1, . . . , bm). The LLL
algorithm outputs a reduced basis (v1, . . . ,vm) satisfying

‖v1‖, ‖v2‖, . . . , ‖vi‖ ≤ 2
m(m−1)

4(m+1−i) det(L)
1

m+1−i for 1 ≤ i ≤ m

in time polynomial in m and in the bit-size of the entries of the basis matrix.
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Howgrave-Graham [13] refined on Coppersmith’s techniques to propose a
succinct lemma for judging whether the small roots of a modular equation are
roots over Z. For a given polynomial g(x1, . . . , xn) =

∑
ai1,...,in

xi1
1 · · · xin

n , its
norm is defined as ‖g(x1, . . . , xn)‖ :=

√∑ |ai1,...,in
|2.

Lemma 2. Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an integer polynomial of at most
m monomials. Suppose that

1. g(x′
1, . . . , x

′
n) ≡ 0 mod R, where |x′

1| ≤ X1, . . . , |x′
n| ≤ Xn,

2. ‖g(x1X1, . . . , xnXn)‖ < R/
√

m.

Then g(x′
1, . . . , x

′
n) = 0 holds over the integers.

Combining Lemmas 1 and 2, one can solve modular/integer equations under a
particular condition. One first constructs shift polynomials from a given equation
and then generate a lattice basis matrix using the coefficient vectors. Once integer
equations are derived from the first � reduced vectors through the LLL algorithm,
one can extract the root for 2

m(m−1)
4(m+1−�) det(L)

1
m+1−� < R/

√
m. It further leads to

a rough condition det(L) < Rm if ignoring the negligible lower terms. The first
� vectors are transformed into simultaneous equations sharing the common root
over the integers. Hence, one can apply the Gröbner basis computation to extract
the common root.

Recently, Peng et al. [17] proposed an improved lattice-attack on the Dual
RSA scheme [20] using the splitting technique. It can split a variable of large
norm into several variables of smaller norm by reducing a low-dimensional lat-
tice. Concretely, it is based on the observation of Gaussian heuristic in random
lattices, which says that the norm of the shortest non-zero vector s of a random
m-dimensional lattice L satisfies ‖s‖ ≈ √

m/(2πe) det(L)
1
m . Let the successive

minimum λi(L) denote the i-th minimum of L, which is the radius of the small-
est zero-centered ball containing at least i linearly independent lattice vectors.
In this sense, ‖s‖ can be written as λ1(L).

A further claim on this property can be found in [11]. The successive minima
of a random m-dimensional lattice L are all asymptotically close to the Gaussian
heuristic with an overwhelming probability. That is λi(L) ≈ √

m/(2πe) det(L)
1
m

for all 1 ≤ i ≤ m. We adapt the splitting technique along with the linearization
technique [12] to present convenient lattice construction in our lattice-based
attacks. In this paper, we use the fact |si1| ≈ det(L0)

1
m , where si for 1 ≤ i ≤ m

is a reduced basis vector after running the LLL algorithm on the constructed
m-dimensional full-rank lattice L0.

3 Implicit Related-Key Factorization Attacks

We first propose a lattice-based attack for given two RSA instances, namely
(N1, e1, d1) and (N2, e2, d2). Recall that we know e1 ≈ e2 ≈ N , where N denotes
an integer with the same bit-size as N1, N2 and the private keys d1, d2 share
some MSBs and LSBs leaving one different block in the middle. Moreover, we
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have d1 ≈ d2 ≈ N δ and d2 = d1 + d21D for |d21| ≈ Nβ and |D| ≈ Nγ (assuming
γ and β are given in advance).

We first perform the splitting technique to split one unknown private key into
a linear combination of two smaller unknown variables. To do so, we construct
a two-dimensional lattice L0 that is generated by the following basis matrix

B0 =
[
a0 e1
0 N1

]

for a well-chosen integer a0.
From the key equation e1d1 ≡ 1 mod ϕ(N1) and ϕ(N1) = N1+1−p1−q1, we

have e1d1 − k1N1 = k1(1− p1 − q1)+1 for a positive integer k1. Hence, we know
(d1,−k1)B0 = (a0d1, k1(1 − p1 − q1) + 1) is a vector belonging to L0. We have
k1 = (e1d1 − 1)/ϕ(N1) ≈ N δ. We set a0 = [N

1
2 ] to balance each coordinate of

(a0d1, k1(1−p1−q1)+1), whose norm is ‖(a0d1, k1(1−p1−q1)+1)‖ ≈ N δ+ 1
2 . The

determinant of L0 is det(L0) = |det(B0)| = a0N1 ≈ N
3
2 from our construction

of the basis matrix B0.
We can obtain two reduced basis vectors (s11, s12) and (s21, s22) through the

lattice reduction algorithm. Further by applying the Gaussian heuristic, we have
‖(s11, s12)‖ = ‖(s21, s22)‖ ≈ det(L0)

1
2 ≈ N

3
4 , which indicates the norms of s11,

s12, s21 and s22 are roughly N
3
4 . Actually, we have s11 = a0a1 and s21 = a0a2

as the reduced basis vectors are generated by[
s11 s12
s21 s22

]
=

[
a1 −
a2 −

] [
a0 e1
0 N1

]
=

[
a0a1 ∗
a0a2 ∗

]
,

where known integers a1 and a2 are elements appearing in the first column vector
of the unimodular transformation matrix. It can easily deduced that |a1| ≈ |a2| ≈
|s21/a0| ≈ N

1
4 .

On the other hand, we have a0d1 = s11c1+s21c2 since (s11, s12) and (s21, s22)
are also basis vectors. Hence, we obtain d1 = a1c1 + a2c2 for unknown c1 and
c2. Combining it with d2 = d1 + d21D, we finally have d2 = a1c1 + a2c2 + d21D.
We want to figure out the norms of c1 and c2. As |a1| ≈ |a2| ≈ N

1
4 , we have

|c1| ≈ |c2| ≈ |d2/a2| ≈ N δ− 1
4 . We substitute d2 = a1c1 + a2c2 + d21D in another

key equation e2d2 = k2(N2 +1− p2 − q2)+ 1 and have e2(a1c1 + a2c2 + d21D) =
k2(N2 + 1 − p2 − q2) + 1. Therefore, we turn to solving f(x, y, z, w) := x(y −
N2 − 1) + e2a1z + e2Dw − 1 mod e2a2 with the root (k2, p2 + q2, c1, d21) for the
implicit related-key factorization problem.

To provide an elegant lattice construction, we further apply the linearization
technique introduced in [12]. Letting u := xy − 1, we have the linear polynomial
f̄(x, z, w, u) := u − (N2 + 1)x + e2a1z + e2Dw mod e2a2. The shift polynomials
are defined as

g[i,j,k,l1,l2](x, y, z, w, u) := xiyjzl1wl2 f̄k(x, z, w, u)Es−k
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for E = e2a2, a positive integer s and i, j, k, l1, l2 ∈ N. We denote the set of the
shift polynomials by G := G1 ∪ G2, where

G1 :={g[i,0,k,l1,l2](x, y, z, w, u) : k = 0, . . . , s; i = 0, . . . , s − k;
l1 = 0, . . . , s − k − i; l2 = 0, . . . , s − k − i − l1.},

G2 :={g[0,j,k,l1−l2,l2−k](x, y, z, w, u) : l1 = 0, . . . , s; j = 1, . . . , τ l1;
l2 = 0, . . . , l1; k = 0, . . . , l2.}

for an optimizing parameter 0 ≤ τ ≤ 1 to be determined later. It is obvious that
all the shift polynomials share the common root (k2, p2+q2, c1, d0, k2(p2+q2)−1)
modulo Es.

By defining auxiliary parameters r = i + k + l1 + l2 and r′ = i′ + k′ + l′1 + l′2,
the polynomial and monomial orders ≺ are defined as g[i,j,k,l1,l2] ≺ g[i′,j′,k′,l′1,l′2]

and xiyjukzl1wl2 ≺ xi′
yj′

uk′
zl′1wl′2 , respectively if r < r′ or r = r′, i ≥ i′ or

r = r′, i = i′, l1 ≥ l′1 or r = r′, i = i′, l1 = l′1, l2 ≥ l′2 or r = r′, i = i′, l1 =
l′1, l2 = l′2, j < j′.

We can substitute each occurrence of xy by u+1. The lattice basis matrix B is
constructed by taking the coefficient vectors of g[i,j,k,l1,l2](xX, yY, zZ,wW, uU)
in G as row vectors, where X, Y , Z, W and U denote the upper bounds on
unknown variables. Additionally, the rows and columns of B are arranged accord-
ing to the above polynomial and monomial orders. Two parameters s and τ can
guarantee that B is square and triangular.

Table 1 shows a toy example of the lattice basis matrix B for s = 1 and τ = 1,
where each row can be viewed as the coefficient vector transformation from a
shift polynomial. We are able to obtain the basis matrix B that generates the
main lattice L directly from our construction.

Table 1. A toy example of the constructed lattice basis matrix B for s = 1 and τ = 1
with E = e2a2 and C = −(N2 + 1).

1 x z yz w yw u yu

g[0,0,0,0,0](xX, yY, zZ, wW, uU) E

g[1,0,0,0,0](xX, yY, zZ, wW, uU) EX

g[0,0,0,1,0](xX, yY, zZ, wW, uU) EZ

g[0,1,0,1,0](xX, yY, zZ, wW, uU) EY Z

g[0,0,0,0,1](xX, yY, zZ, wW, uU) EW

g[0,1,0,0,1](xX, yY, zZ, wW, uU) EY W

g[0,0,1,0,0](xX, yY, zZ, wW, uU) CX e2a1Z e2DW U

g[0,1,1,0,0](xX, yY, zZ, wW, uU) C e2a1Y Z e2DY W CU Y U

Since we already know X ≈ N δ, Y ≈ N
1
2 , Z ≈ N δ− 1

4 , W ≈ Nβ , U ≈ N δ+ 1
2

and E ≈ N
5
4 , we can calculate the determinant of L that is the product of the

diagonal entries of the basis matrix B.
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det(L) =

(
s∏

k=0

s−k∏
i=0

s−k−i∏
l1=0

s−k−i−l1∏
l2=0

XiZl1W l2UkEs−k

)

×
⎛
⎝ s∏

l1=0

τl1∏
j=1

l1∏
l2=0

l2∏
k=0

Y jZl1−l2W l2−kUkEs−k

⎞
⎠

= XsxY syZszW swUsuEsE ,

where sx, sy, sz, sw, su and sE are the respective exponent sums of the diagonal
entries of the basis matrix B. The lattice dimension is

m =
s∑

k=0

s−k∑
i=0

s−k−i∑
l1=0

s−k−i−l1∑
l2=0

1 +
s∑

l1=0

τl1∑
j=1

l1∑
l2=0

l2∑
k=0

1 =
1 + 3τ

24
s4 + o(s4).

Similarly, we calculate sx = 1
120s5, sy = τ2

20 s5, sz = sw = su = 1+4τ
120 s5 and

sE = 4+11τ
120 s5 when omitting o(s5) as it is negligible for sufficiently large s.

From the rough condition det(L) < Rm with R = Es for acquiring enough
integer equations sharing the common root, we have

XsxY syZszW swUsuEsE < E
1+3τ
24 s5

.

Moreover, we let s go to infinite and obtain the crucial condition

1
120

· ξx +
τ2

20
· ξy +

1 + 4τ

120
· (ξz + ξw + ξu) +

4 + 11τ

120
· ξE <

1 + 3τ

24
· ξE ,

where ξx, ξy, ξz, ξw, ξu and ξE denote the exponents of the respective upper
bounds. We further reduce the crucial condition to a simplified one

ξx + 6τ2ξy + (1 + 4τ)(ξz + ξw + ξu − ξE) < 0.

We know ξx = δ, ξy = 1
2 , ξz = δ − 1

4 , ξw = β, ξu = δ + 1
2 and ξE = 5

4 . Thus, we
obtain

δ + 3τ2 + (1 + 4τ)
(

δ − 1
4

+ β + δ +
1
2

− 5
4

)
< 0,

which leads to

δ <
(1 − β)(1 + 4τ) − 3τ2

3 + 8τ
.

The right side reaches its maximum by taking τ = (
√

177 − 96β − 9)/24. We
put it into the above inequality and hence derive the final condition

δ <
25 − 16β − √

177 − 96β

32
.

Once we extract the common root (k2, p2 + q2, c1, d21, k2(p2 + q2) − 1), we
can easily factorize N2 using the value of p2 + q2. Then we have d2 from d2 =
e−1
2 mod ϕ(N2), which can be used to recover d1 by d1 = d2 − d21D. Thus, we
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Fig. 1. The solid curve denotes the upper bound on δ and the dot-dash line denotes
the lower bound on δ. The gray area indicates the vulnerable scenarios of the proposed
implicit related-key factorization attack for given two RSA instances.

can factorize N1 as knowing d1 is equivalent to the factorization of N1, which
has been proved in [9].

The above result is illustrated in Fig. 1. We gain a significant improvement
of the insecure bound on δ with the help of known implicit information about
the related private keys. One may wonder whether our approach can handle the
implicit related-key factorization problem for more than two RSA instances. We
give an answer to this question below.

Recall the attack scenario for handling the implicit related-key factorization
problem with n distinct RSA instances. Given n key pairs of RSA parameters
(Ni, ei, di) for 1 ≤ i ≤ n. We assume ei ≈ N and di ≈ N δ with dj = di + djiD,
where |dji| ≈ Nβ and |D| ≈ Nγ for 1 ≤ i < j ≤ n.

We first perform the splitting technique to split d1 into a linear combination of
several smaller unknown variables. We introduce a concise heuristic construction
of a (2n − 1)-dimensional lattice L0 that is generated by the basis matrix

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 0 · · · 0 e2 · · · en

0 b0 · · · 0 e2D · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · b0 0 · · · enD
0 0 · · · 0 N2 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · Nn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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for two well-chosen integers a0 and b0. Hence, (d1, d21, . . . , dn1,−k2, . . . ,−kn)B0

belongs to L0. That is (a0d1, b0d21, . . . , b0dn1, k2(1−p2 −q2)+1, . . . , kn(1−pn −
qn) + 1) as we know eid1 + eidi1D − kiNi = eidi − kiNi = ki(1 − pi − qi) + 1 for
2 ≤ i ≤ n from the related-key equations of di, dj and the RSA key equations.

We know that ki = (eidi − 1)/ϕ(Ni) ≈ N δ for 1 ≤ i ≤ n. To balance each
coordinate of above vector, we set a0 = [N

1
2 ] and b0 = [N

1
2+δ−β ]. The norm

of the constructed vector is roughly estimated as N δ+ 1
2 . The determinant of

L0 is det(L0) = |det(B0)| = a0b
n−1
0

∏n
i=2 Ni ≈ N

3
2n−1+(n−1)(δ−β) from our

construction of the basis matrix B0.
When applying the Gaussian heuristic, the norm of the reduced basis vectors

is roughly det(L0)
1

2n−1 ≈ N
3n−2+2(n−1)(δ−β)

2(2n−1) . Similarly, we have d1 = a1c1+a2c2+
· · ·+a2n−1c2n−1 as an integer linear combination of (2n−1) unknown variables,
where ai’s come from the first column vector of the unimodular transformation
matrix. We have |ai| ≈ det(L0)

1
2n−1 /a0 ≈ N

3n−2+2(n−1)(δ−β)
2(2n−1) − 1

2 = N
(n−1)(2δ−2β+1)

2(2n−1)

and hence |ci| ≈ |d1/a1| ≈ N δ− (n−1)(2δ−2β+1)
2(2n−1) = N

2nδ+2(n−1)β−n+1
2(2n−1) .

Substituting the alternative expression of d1 in e1d1 = k1(N1+1−p1−q1)+1,
we try to solve x(y − N1 − 1) + e1a1z1 + · · · + e1an̂zn̂ − 1 mod e1an̂+1 in (n̂ + 2)
variables with the root (k1, p1 + q1, c1, . . . , cn̂) for n̂ = 2n − 2. Letting u :=
xy − 1, it can be rewritten in the linear form as fn̂(x, z1, . . . , zn̂, u) := u − (N1 +
1)x + e1a1z1 + · · · + e1an̂zn̂ mod e1an̂+1. The shift polynomials are defined as
g[i,j,k,l1,...,ln̂](x, z1, . . . , zn̂, u) := xiyjzl1

1 · · · zln̂
n̂ fk

n̂Es−k for E = e1an̂+1, a positive
integer s and i, j, k, l1, . . . , ln̂ ∈ N.

Analogous to the lattice-based solution applied to the case of two instances,
we finally obtain the following proposition for the case of n instances.

Proposition 2. Let Ni = piqi for 1 ≤ i ≤ n be given RSA moduli of the same
bit-size, where pi and qi are large primes of the same bit-size. Let ei and di

be some integers satisfying eidi ≡ 1 mod (pi − 1)(qi − 1) such that ei ≈ N and
di ≈ N δ. Given the implicit information that dj = di + djiD for 1 ≤ i < j ≤ n
with |dji| ≈ Nβ. Then given RSA moduli can be factored in polynomial time (but
exponential in n) if

δ <
1
2

− β +
2n2 + n − 1 + 4n2β − √

(2n − 1)(6n3 + 3n2 − 1 − 8n2(n − 1)β)
4n3

.

We illustrate the above result with respect to various β’s in Fig. 2 and dis-
cuss more about it. On the one hand, we can achieve higher insecure bound
as β decreases. On the other hand, exposing more RSA instances with implicit
related-keys is more vulnerable. Let n go to infinity, the asymptotic upper bound
converges to 1

2 − β. Consequently, it indicates that the proposed attack is effec-
tive for δ < 1

2 at best for β = 0, which is the same as the conjecture of the
previous small exponent attack [1] unless there exist more effective attacks.
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Fig. 2. The comparison of the upper bounds on δ of the proposed implicit related-key
factorization attack for given n RSA instances with respect to β = 0, β = 0.05, β = 0.1
and β = 0.15.

4 Experimental Results

We verify the validity of the proposed attacks analyzed in Sect. 3 on the implicit
related-key factorization problem for two instances. The experiments are carried
out in SageMath under Windows 10 running on a laptop with Intel Core i7-
8550U CPU 1.80 GHz. The numbers for generating the parameters of two RSA
instances are chosen at random.

To be specific, we first generate two 1024-bit RSA moduli N1 and N2. Then
we generate the implicit related-keys d1 and d2 with certain shared MSBs and
LSBs according to the preset values of β and γ. Finally, we compute the corre-
sponding public keys e1 and e2 from N1, d1 and N2, d2, respectively.

In each numerical experiment, we choose a suitable s with an optimal τ for
constructing the lattice, which implies we shall first reduce a two-dimensional
lattice and then another m-dimensional one. The comparison of the asymptotic
and experimental results are given in Table 2. The γ and β-columns provide the
concrete attack scenarios, by which we randomly generate two related private
keys. The amounts (recorded in bits) of shared MSBs and LSBs are given in the
MSBs and LSBs-columns. The δ∞-column provides the asymptotic bounds on
δ when s goes to infinity. The δe-column provides the experimental bounds for
our lattice settings indicated by the s, τ and m-columns. The respective time
consumption (recorded in seconds) of the LLL algorithm and the Gröbner basis
computation are given in the TL and TG-columns.

During the experiments, we can collect sufficient polynomials satisfying our
requirements. In other words, after running the LLL algorithm, we obtain enough
short reduced basis vectors. The polynomial equations sharing the common root
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Table 2. The comparison of asymptotic bounds and experimental results on δ of the
proposed implicit related-key factorization attack for given two RSA instances.

γ β MSBs LSBs δ∞ δe s τ m TL TG

0.117 0.048 130 120 0.346 0.292 5 0.200 136 112.834 0.121

0.117 0.039 163 120 0.350 0.315 6 0.166 225 1933.569 0.151

0.043 0.058 199 44 0.342 0.295 5 0.200 136 140.853 0.122

0.034 0.063 204 35 0.340 0.296 6 0.166 225 1647.016 0.176

0.078 0.092 123 80 0.329 0.290 5 0.200 136 174.732 0.146

0.078 0.097 121 80 0.327 0.293 6 0.166 225 2336.019 0.162

over the integers are derived from the vector-to-equation transformation of the
outputted lattice vectors. Based on the observation from Table 2, we briefly
comment on the root-extraction procedure of the proposed attack. We put the
derived polynomials into the Gröbner basis computation and obtain p2 +q2 that
leads to the factorization of N2. As mentioned before, we can also obtain the
factorization of N1. The time consumption of the Gröbner basis computation is
much lower than that for running the LLL algorithm.

5 Concluding Remarks

In this paper, we propose the formulation of a new problem with respect to
implicit related-key factorization, whose goal is to factor RSA moduli with the
help of implicit information about related private keys. We then propose lattice-
based attacks using Coppersmith’s techniques, which are applied for solving
modular polynomials as a powerful tool. Another technique we adapt is the
splitting technique, which can split a variable of the large norm into some vari-
ables of the smaller norm.

We analyze the implicit related-key factorization problem for a special case
when given two RSA instances. A lattice-based attack for such case is proposed
and illustrated. We further verify the validity of the proposed attack by numer-
ical experiments. For the case of more than two RSA instances, a similar attack
is proposed based on a heuristic lattice construction. The concrete matrix con-
struction with respect to the splitting technique may be improved (i.e. a0 and
b0 can be further optimized).
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