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Abstract. In this paper, we study the security of multi-prime RSA with
small prime difference and propose two improved factoring attacks. The
modulus involved in this variant is the product of r distinct prime factors
of same bit-size. Zhang and Takagi (ACISP 2013) showed a Fermat-like
factoring attack on multi-prime RSA. In order to improve the previous
result, we gather more information about the prime factors to derive r
simultaneous modular equations. The first attack is based on combining
r equations to solve one multivariate modular equation by a generic
lattice approach. Since the equation form is similar to multi-prime Φ-
hiding problem, we propose the second attack by applying the optimal
linearization technique. We also show that our attacks can achieve better
bounds in the experiments.
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1 Introduction

1.1 Background

RSA [20] is a famous public key cryptosystem that has been widely used in var-
ious settings. However, the original RSA is not fit for some constrained environ-
ments. Since people need faster and more efficient RSA encryption/decryption
processes, several variants have been proposed and surveyed [3]. In this paper,
we focus on a variant called multi-prime RSA. It is described as follows.

Key Generation. Generate r distinct primes p1, p2, . . . , pr of same bit-size and
modulus N =

∏r
i=1 pi. Pick a random number that is coprime to ϕ(N) =∏r

i=1(pi − 1) as the public key e and compute the corresponding private key
d = e−1 mod ϕ(N).

Encryption. Transform the message string into an integer M ∈ ZN and com-
pute the ciphertext as C = Me mod N .
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Decryption. Compute Mi = Cdi mod pi for di = d mod (pi − 1), 1 ≤ i ≤ r.
Combine Mi’s by the Chinese Remainder Theorem to obtain the plaintext
M = Cd mod N .

This variant modifies the modulus to N = p1p2 · · · pr for r ≥ 3. It was
patented by Compaq [5], using a modulus of the form N = p1p2p3. We then discuss
the performance of multi-prime RSA. The advantage is the efficiency when using
Chinese Remainder Theorem in its decryption process. From [3], we know that the
asymptotic speedup over the standard RSA is approximately r2

4 . Moreover, ordi-
nary attacks such as small private exponent attack and partial key exposure attack
are less effective as r increases. But r should not be unrestrictedly large because
of the Elliptic Curve Method [18]. Since factoring a multi-prime RSA modulus
using ECM is much easier with increasing r, one might choose r = 3, 4 and 5 for
most settings. Generally speaking, multi-prime RSA with appropriate r might be
a practical alternative for reducing the decryption costs.

Without loss of generality, we have p1 < p2 < · · · < pr and 1
2N

1
r < p1 <

N
1
r < pr < 2N

1
r . The second one indicates that the prime factors are balanced,

which means that they are roughly of same bit-size. The prime difference Δ is
defined as Δ := maxi�=j |pi − pj | = pr − p1 = Nγ for 0 < γ < 1

r . The security
of multi-prime RSA has been investigated for small private exponent [4,13,14]
and for small prime difference [1,22,25,26].

Prime difference was introduced by de Weger [11] to show that one can find
an enhanced small private exponent attack with small prime difference. As for
multi-prime RSA, it is also applied to obtain some improvements. Thereafter
we review some related previous attacks. Suppose that N is a multi-prime RSA
modulus with r prime factors. Let e ≈ N be a valid public key and d = N δ be
its corresponding private key.

Bahig-Bhery-Nassr [1]. Given the prime difference Δ = Nγ and the public
key (N, e), then multi-prime RSA is insecure if γ and d satisfy

2d2 + 1 <
N

2
r −γ

6r
.

Zhang-Takagi [25,26]. Given the prime difference Δ = Nγ and the public key
(N, e), then d can be probabilistically found in time polynomial in log N if γ and
δ satisfy

δ < 1 −
√

1 + γ − 2
r
.

The bound was later refined to

δ < 1 −
√

1 + 2γ − 3
r

for γ ≥ 3
2r

− 1 + δ

4
,

δ <
3
r

− 1
4

− 2γ for γ <
3
2r

− 1 + δ

4
.
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They also presented a Fermat-like factoring attack for

γ <
1
r2

.

Takayasu-Kunihiro [22]. Given the prime difference Δ = Nγ and the public
key (N, e), then d can be probabilistically found in time polynomial in log N if
γ and δ satisfy

δ < 1 −
√

1 + 2γ − 3
r

for
3
2
(
1
r

− 1
4
) ≤ γ <

1
r
,

δ < 1 − 2
3
(

√

(7 + 8γ − 12
r

)(1 + 2γ − 3
r
) − 1 − 2γ +

3
r
) for γ <

3
2
(
1
r

− 1
4
).

Notice that the condition 3
2r − 1+δ

4 in Zhang-Takagi attack degenerates
to − δ

4 for r = 6, and the condition 3
2 ( 1r − 1

4 ) in Takayasu-Kunihiro attack degen-
erates to 0 for r = 4. Thus, Zhang-Takagi attack and Takayasu-Kunihiro attack
depend on δ with γ < 1

r for larger r. In such cases, factoring attacks with quite
small γ are much more effective without any restriction on δ. The distinction
is the dependence on the private exponent and this is also the advantage of
factoring attacks.

1.2 Our Contribution

In this paper, we aim to factor the multi-prime RSA modulus with small prime
difference. More concretely, N can be factored in polynomial time under which
condition when given the multi-prime RSA modulus N that is the product of r
distinct primes and its prime difference Nγ .

Let xi = pi − p for i = 1, 2, . . . , r with |xi| = |pi − p| < pr − p1 = Nγ for
p = [N

1
r ]. At ACISP 2013, Zhang and Takagi [25] solved xi from each equation

and computed prime factors by pi = xi + p. In our opinion, they only made use
of partial information about prime factors with prime difference. In contrast, we
transform the knowledge of all balanced prime factors with prime difference into
the following modular equations.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 + p = 0 mod p1,

x2 + p = 0 mod p2,

...
xr + p = 0 mod pr.

Our factoring problem is somewhat similar to multi-prime Φ-hiding problem
introduced by Kiltz et al. [16] because of the modular equation form. The defin-
ition of multi-prime Φ-hiding problem is given. Let N = p1 · · · pr be a composite
integer (of unknown factorization) with r distinct prime factors of same bit-size.
Given N and a prime e, decide whether e divides pi for 1 ≤ i ≤ r − 1 or not.
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In order to solve multi-prime Φ-hiding problem, one can try to solve the
following simultaneous equations and then conclude that e is Φ-hidden in N or
not.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ex1 + 1 = 0 mod p1,

ex2 + 1 = 0 mod p2,

...
exr−1 + 1 = 0 mod pr−1.

There exist some differences between these two problems. In Φ-hiding prob-
lem, since it is not necessary to know the exact values of the unknowns but
enough to know if the equations can be solved, one can perform a linearization on
the product

∏r−1
i=1 (exi+1) and then decide if

∏r−1
i=1 (exi+1) = 0 mod p1p2 · · · pr−1

can be solved. Thus, it is like a “decision”-form problem. Our factoring problem
is like a “search”-form one because we must extract the value of every unknown
variable. In our optimized method, we can transform the factoring problem into
a “decision”-form problem and then apply the optimal linearization technique.

Another difference is that we do not have exr + 1 = 0 mod pr in Φ-hiding
problem. This special feature can be applied to improve the bound [24]. However
we can not directly use the same technique to solve the factoring problem.

Our improvements are based on two ideas. The first one is a direct method
by gathering all the equations together to solve an r-variate modular equation.
The drawback of this method is that the running time is exponential in r. So we
provide an optimized method by combining fewer equations. Inspired by Tosu
and Kunihiro [23], we can benefit from the optimal linearization technique with
fewer unknowns and less cost. Thus, we will obtain a great speedup and efficient
performance in the practical implementation.

We show that multi-prime RSA modulus with small prime difference can be
efficiently factored in the following cases due to various r’s.

– For r ≤ 6, we have

γ <
2

r(r + 1)
.

– For r ≥ 7 and an optimal l, we have

γ <
2

l + 1

(
1
r

) l+1
l

.

– For much larger r and the base of natural logarithm e, we have

γ <
2

er(log r + 1)
.
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2 Preliminaries

2.1 Lattice Based Method

We briefly introduce lattice based method including the LLL algorithm [17],
Coppersmith’s technique [6–8], Howgrave-Graham’s lemma [15] and Coron’s
reformulation [9,10].

The technique is to construct a set of polynomials modulo R sharing the
common roots and then reduce them to the equations over the integers. After
transforming known parameters into constructed polynomials’ coefficients that
form a lattice basis matrix with dimension w. One can compute some short lattice
vectors whose norm is expected to be sufficiently small by the LLL algorithm.
Eventually, one can solve the desired roots. The LLL algorithm proposed by
Lenstra, Lenstra and Lovász [17] is practically used for finding approximately
small lattice vectors.

Lemma 1. Let L be a lattice with determinant det(L). The LLL algorithm out-
puts a reduced basis (v1, v2, . . . , vw) in polynomial time, and for 1 ≤ i ≤ w, the
reduced basis vectors satisfy

‖v1‖, ‖v2‖, . . . , ‖vi‖ ≤ 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i .

The following lemma presented by Howgrave-Graham [15] helps us to judge
whether the roots of a modular equation are also roots over the integers. To
a given polynomial g(x1, . . . , xn) =

∑
ai1,...,inxi1

1 · · · xin
n , its norm is defined as

‖g(x1, . . . , xn)‖2 :=
∑ |ai1,...,in |2.

Lemma 2. Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an integer polynomial that is a
sum of at most m monomials. Suppose that

1. ‖g(x1X1, . . . , xnXn)‖ ≤ R√
m

,

2. g(x(0)
1 , . . . , x

(0)
n ) = 0 mod R for |x(0)

1 | ≤ X1, . . ., |x(0)
n | ≤ Xn.

Then we have g(x(0)
1 , . . . , x

(0)
n ) = 0 over the integers.

The above fundamental lemmas give us the final condition, which is roughly
det(L) < Rw. Some RSA cryptanalytic applications [2,8,12] are derived from
such lattice based method. But Boneh and Durfee [2] have noted that solving
multivariate equations is heuristic because the polynomials derived from lattice
reduction algorithms are not guaranteed to be algebraically independent. In
order to extract the exact roots in practice, we rely on the following assumption.

Assumption 1. The polynomials derived from the LLL algorithm in lattice
based method are algebraically independent. Furthermore, the solution can be
efficiently found by Gröbner basis computations.

Our improved attacks can be reduced to solving multivariate linear equations
that was studied by Herrmann and May [12].
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Lemma 3. Let ε > 0 and let N be a sufficiently large composite integer (of
unknown factorization) with a divisor p ≥ Nβ. Furthermore, let f(x1, . . . , xn) ∈
Z[x1, . . . , xn] be a linear polynomial in n variables. Under Assumption 1, we
can find solutions (x(0)

1 , . . . , x
(0)
n ) of the equation f(x1, . . . , xn) = 0 mod p with

|x(0)
1 | ≤ Nη1 , . . . , |x(0)

n | ≤ Nηn if
n∑

i=1

ηi ≤ 1 − (n + 1)(1 − β) + n(1 − β)
n+1
n − ε.

The time complexity is polynomial in log N and (e/ε)n.

The lattice based algorithm was later improved by Lu et al. [19] and Takayasu
and Kunihiro [21]. Since the cryptanalysis is based on approximations, we neglect
the lower order terms and remove ε in our methods for simplicity.

2.2 Some Notations

We introduce the following notations for our methods.

– p denotes the value of rounding N
1
r to the nearest integer and it is mentioned

above as p = [N
1
r ].

– σk
i denotes the elementary symmetric polynomial in k variables y1, . . ., yk of

degree i and it is defined by σk
i :=

∑
λ⊂{1,2,...,k},|λ|=i

(∏
j∈λ yj

)
.

– Qk denotes the product of k prime factors that are chosen from p1, p2, . . . , pr

and hence Qk is a divisor of N .
– Q′

k denotes the numerical value of the left side after solving the equation and
hence Q′

k is a multiple of Qk.

3 Improved Factoring Attacks

3.1 The Direct Method

As mentioned before, we gather all the equations together to solve an r-variate
modular equation. More concretely, we present the following factoring attack.

Proposition 1. Let N = p1 · · · pr be a multi-prime RSA modulus for p1 < · · · <
pr and pr−p1 = Nγ for 0 < γ < 1

r . Then under Assumption 1, N can be factored
in time polynomial in log N but exponential in r if

γ <
2

r(r + 1)
.

Our approach utilizes the equation form of multi-prime Φ-hiding problem. Let e
be the inverse of p modulo N , namely e = p−1 mod N . Then yi + p = 0 mod pi

can be rewritten as eyi + 1 = 0 mod pi and we obtain
⎧
⎪⎪⎨

⎪⎪⎩

ey1 + 1 = 0 mod p1,

...
eyr + 1 = 0 mod pr.
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Combining all equations together gives us

r∏

i=1

(eyi + 1) =
r∑

i=1

eiσr
i + 1 = 0 mod N.

We have e = p−1 mod N that is equivalent to ep = 1 mod N . It can be reduced
to

∑r
i=1 eiσr

i + ep = 0 mod N and further

r∑

i=1

ei−1σr
i + p = 0 mod N.

Regarding each σr
i as a new variable makes

∑r
i=1 ei−1σr

i + p a linear equation.
We then figure out each ηi of |σr

i | < Nηi for i = 1, . . . , r and apply Lemma 3
with β = 1. It is not hard to know that ηi = iγ for 1 ≤ i ≤ r. Thus, the final
condition is

∑r
i=1 iγ < 1, which can be simplified to

γ <
2

r(r + 1)
.

After solving the linear equation, we obtain the values of σr
1, . . . , σ

r
r . Then

we extract x1, . . . , xr by solving xr − σr
1x

r−1 + · · · + (−1)rσr
r = 0 over the

integers. Finally, we compute the prime factors p1, . . . , pr for pi = xi + p. The
full description of the algorithm is given in Appendix A.1.

The running time depends on reducing the basis matrix and extracting the
common roots. The LLL algorithm can output the desired polynomials in time
polynomial in log N but exponential in r. This may be a drawback due to large r
and forces us to find more efficient method. The Gröbner basis computation for
finding the common roots is usually polynomial time in practice. Additionally,
one can obtain more polynomials derived from the LLL algorithm and hence the
Gröbner basis computation is suggested rather than resultant computation.

3.2 The Optimized Method

As described in the direct method, we still solve the factoring problem in the
view of a “search”-form problem. Its drawback is that the time complexity is
exponential in r. Consequently, the factoring attack becomes less efficient for
larger r.

When considering taking fewer equations to form one modular equation, we
have some interesting observations. We randomly choose k (2 ≤ k ≤ r − 1)
equations and obtain a new equation F (y1, . . . , yk) = 0 mod Qk. Fortunately, it
is enough to know the numerical value Q′

k of the left side and not necessary to
know exact values of y1, . . . , yk. Then, computing the greatest common divisor
gcd (Q′

k, N) gives us all combinations of k prime factors that indicate every prime
factor.

In fact, the factoring problem is refined to become of “decision”-form. Thus,
we can employ the optimal linearization similar to the technique proposed by
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Tosu and Kunihiro [23] when solving multi-prime Φ-hiding problem. The idea
is to examine all possible linearization cases to find the optimal setting when it
can be efficiently solved. We present the optimized factoring attack below.

Proposition 2. Let N = p1 · · · pr be a multi-prime RSA modulus for p1 < · · · <
pr and pr−p1 = Nγ for 0 < γ < 1

r . Then under Assumption 1, N can be factored
in time polynomial in log N with an optimal l if

γ <
2

l + 1

(
1
r

) l+1
l

.

We consider combining k equations and performing a linearization of l (2 ≤
l ≤ k) variables. Note that the parameters k and l need to be decided later.
First, we have (y1 + p)(y2 + p) · · · (yk + p) = 0 mod Qk. It can be rewritten as
∑k

i=0 pk−iσk
i = 0 mod Qk. The expansion is

σk
k + pσk

k−1 + p2σk
k−2 + · · · + pk = 0 mod Qk.

Then, we apply a linearization for the case of l variables. Let t1, . . . , tl+1 be
the integers satisfying t1 = k > t2 > · · · > tl+1 = 0. We obtain

pk−t1u1 + pk−t2u2 + · · · + pk−tlul + pk = 0 mod Qk,

where ui :=
∑ti

j=ti+1+1 pti−jσk
j for 1 ≤ i ≤ l. For |yi| < Nγ , p ≈ N

1
r and γ < 1

r ,

we know that the bound is |ui| < N
ti−ti+1−1

r +(ti+1+1)γ . In other words, we have

ηi =
ti − ti+1 − 1

r
+ (ti+1 + 1)γ.

Thus, we can find the roots of the linear equation by Lemma 3 with β = k
r

and above ηi if
∑n

i=1 ηi < 1 − (l + 1)(1 − β) + l(1 − β)
l+1
l .

Then we have

γ <
l ·

(
k+1

r + (1 − k
r )

l+1
l − 1

)

l +
∑l

i=2 ti
.

The above bound reaches its maximum by setting (t1, t2, t3, . . . , tl) to be
(k, l − 1, l − 2 . . . , 1). The condition now is

γ <
2

l + 1

(
k + 1

r
+ (1 − k

r
)

l+1
l − 1

)

.

We can further optimize k to obtain the best bound on γ by calculating the
derivative on k. It can be verified that k = r − 1 is the most suitable choice.
Thus, we derive the condition

γ <
2

l + 1

(
1
r

) l+1
l

.
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It means that we need to solve

u1 + pr−lu2 + · · · + pr−2ul + pr−1 = 0 mod Qr−1.

The optimal value of l can be discovered by numerical computation. For each
positive integer r ≤ 10, the optimal cases are l = 2 for r = 3, 4, 5, and l = 3 for
r = 6, 7, 8, 9, 10. To be specific, we show the final equations need to be solved in
our optimized method as follows.

– For r = 3, 4, 5, that is

u1 + pr−2u2 + pr−1 = 0 mod Qr−1.

– For r = 6, 7, 8, 9, 10, that is

u1 + pr−3u2 + pr−2u3 + pr−1 = 0 mod Qr−1.

As analyzed in [23], we set l ≈ log r for much larger r and the condition is
approximated

γ <
2

er(log r + 1)
,

where e is the base of natural logarithm. Therefore, we also present the factoring
attack for much larger r.

Proposition 3. Let N = p1 · · · pr be a multi-prime RSA modulus for p1 < · · · <
pr and pr−p1 = Nγ for 0 < γ < 1

r . Then under Assumption 1, N can be factored
in time polynomial in log N for much larger r if

γ <
2

er(log r + 1)
.

After solving the modular equation, we obtain the values of u1, . . . , ul. Then
we know all combinations of r − 1 prime factors by gcd (Q′

r−1, N). Finally, we
compute each prime factor by N

gcd (Q′
r−1,N) .

Note that we can find all prime factors by solving the linear equation once
because every combination (or product) of r − 1 prime factors is equivalent to
each other. Using l ≈ log r implies that our method works in time polynomial in
log N and r.

3.3 Discussions

Compare with the direct method, we have two improvements in our optimized
method. Firstly, we decrease the number of unknown variables and significantly
improve the practical performance for larger r. Secondly, we can achieve a better
bound for much larger r at the same time. But for r ≤ 6, the direct method offers
a higher bound and hence the factoring attack is still in polynomial time.



Improved Factoring Attacks on Multi-prime RSA 333

Note that the unknown variables ui’s in the optimized method are quite
unbalanced. So we make further improvement by applying better lattice con-
structions proposed by Takayasu and Kunihiro [21]. Here we omit the compli-
cated analysis and show another advantage. For r ≤ 10, the optimal l is always
2. It means that the final equation we need to solve in the optimized method is
u1 + pr−2u2 + pr−1 = 0 mod Qr−1. Thus, we further reduce the running time of
the optimized factoring attack. The full description of the optimized algorithm
and detailed lattice construction are given in Appendix A.2.

Table 1 shows the comparison of upper bound on γ due to above factoring
attacks for r ≤ 10. The fourth column provides the results using better lattice
construction that is discussed above. It is visible that our methods are superior.

Table 1. The comparison of upper bound on γ due to above factoring attacks

r Section 3.1 Section 3.2 Section 3.3 Zhang-Takagi [25]

3 0.1666 0.1283 — 0.1111

4 0.1000 0.0833 0.0835 0.0625

5 0.0666 0.0596 0.0608 0.0400

6 0.0476 0.0458 0.0474 0.0277

7 0.0357 0.0373 0.0387 0.0204

8 0.0277 0.0312 0.0327 0.0156

9 0.0222 0.0267 0.0282 0.0123

10 0.0181 0.0232 0.0248 0.0100

3.4 Experimental Results

We now state some experimental results to show the practical performance of
our methods. These experiments are carried out under Sage 7.3 running on a
laptop with Intel Core i7 CPU 2.70 GHz and 8 GB RAM. The numbers we
used are chosen uniformly at random and Assumption 1 is found to hold for the
experiments.

During the experiments, we collect many polynomials satisfying our require-
ments. In other words, we obtain enough sufficiently short vectors after running
the LLL algorithm. Hence, we extract the common roots by Gröbner basis com-
putation and finally attain the factorization of multi-prime RSA modulus.

We provide the experimental results on two attacks according to Sects. 3.1
and 3.2 (actually refined by Sect. 3.3), namely the γe1-column and γe2-column,
respectively. The γzt-column provides the experimental bound of Zhang-Takagi
method. The results about the comparison are showed in Table 2.

We firstly comment the experiments for r = 3. We reduce a 220-dimensional
lattice for the direct method while we use a lattice whose dimension is 300 for
the optimized method. A 1536-bit multi-prime RSA modulus can be successfully
factored by a 174-bit prime difference by the direct method. While using the
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Table 2. The experimental results of upper bound on γ

r γzt γe1 γe2

3 0.1109 0.1132 0.1120

4 0.0620 — 0.0750

5 0.0396 — 0.0533

6 0.0275 — 0.0337

7 0.0202 — 0.0286

optimized method, a 172-bit difference leads to the factorization of a 1536-bit
modulus. Thus, we conclude that the direct method performs better for r = 3
with roughly similar lattice setting. On the other hand, we observe that the
optimized method runs much faster, which is predicted above.

For 4 ≤ r ≤ 7, we use the optimized method with lattices whose dimension is
around 300 since it is more efficient. We carry out experiments for much smaller
moduli with almost the same lattice setting and they work much better. We
also do experiments for moduli of the same size with various lattice dimensions
for r = 3, 4. The results become better as the lattice dimension increases. So
the lattice dimension may be a critical limitation that influences the practical
performance of lattice based methods. The optimized bounds for 4 ≤ r ≤ 7
showed in the γe2-column are those observed in the experiments with much
smaller moduli. More details are given in Appendix B.

4 Conclusions

Factoring attack works better than small private exponent attack on multi-prime
RSA with much smaller prime difference, and the former removes the restriction
on the private exponents. We further upgrade the insecure bound on the prime
difference and propose improved factoring attacks based on lattice approach and
the optimal linearization technique.

To summarize, our factoring attacks make significant improvements by taking
full knowledge of the small prime difference. We combine more equations rather
than only one equation to solve the factoring problem. Furthermore, applying
the optimal linearization technique on unknown variables helps us to reduce the
time cost and obtain better results.

For our factoring attacks on multi-prime RSA modulus with r primes, solving
an r-variate linear equation constructed by r simultaneous modular equations
is preferred for r ≤ 6. And solving an l-variate (l depends on r) linear equation
constructed by r − 1 equations is preferred for r ≥ 7. Both factoring attacks can
be done in polynomial time.
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A Algorithms

A.1 The Direct Method

Algorithm 1. The direct method (Sect. 3.1)
Input: Multi-prime RSA modulus N with r and small prime difference Nγ .
Output: The factorization N = p1 · · · pr.

1: Compute p = [N
1
r ] and e = p−1 mod N .

2: Construct the linear modular equation with unknown variables σr
i :

σr
1 + e1σr

2 + · · · + er−1σr
r + p = 0 mod N.

3: Figure out ηi’s that are related to the bounds Nηi on σr
i for 1 ≤ i ≤ r:

|σr
i | < N iγ .

4: Extract each σr
i by applying Lemma 3.

5: Solve xr − σr
1xr−1 + · · · + (−1)rσr

r = 0 over the integers.
6: Set pi = p + xi in increasing order with roots xi for 1 ≤ i ≤ r.

A.2 The Optimized Method

In Takayasu-Kunihiro lattice construction, we carefully work out the selection of
polynomials by considering the sizes of root bounds. For example, we deal with
u1 + pr−2u2 + pr−1 = 0 mod Qr−1 in our optimized method. We use ui2

2 (u1 +
pr−2u2 + pr−1)i1Nmax{t−i1,0} as the shift polynomials with positive integers m
and t that will be optimized later. The indexes i1 and i2 satisfy 0 ≤ i1 + i2 ≤ m
and 0 ≤ γ1i1 + γ2i2 ≤ βt in order to select as many helpful polynomials as
possible and to let the basis matrix be triangular.

Thus, the shift polynomials modulo pt have the common roots for u1 and u2.
We span a lattice by the coefficient vectors of above shift polynomials and the
equations are derived from the reduced LLL basis vectors. The small roots can
be easily recovered by Gröbner basis computation.
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Algorithm 2. The optimized method (Sect. 3.2)
Input: Multi-prime RSA modulus N with r and small prime difference Nγ .
Output: The factorization N = p1 · · · pr.

1: Compute p = [N
1
r ].

2: Choose an optimal l according to r.
3: Construct the linear modular equation with unknown variables ui:

u1 + pr−lu2 + · · · + pr−2ul + pr−1 = 0 mod Qr−1.

4: Figure out ηi’s that are related to the bounds Nηi on σr
i for 1 ≤ i ≤ l with known

(t1, t2, t3, . . . , tl, tl+1) = (r − 1, l − 1, l − 2 . . . , 1, 0):

|ui| < N
ti−ti+1−1

r
+(ti+1+1)γ .

5: Extract each ui by using Takayasu-Kunihiro lattice construction.
6: Compute Q′

r−1 = u1 + pr−lu2 + · · · + pr−2ul + pr−1 with roots {u1, . . . , ul}.
7: Set pi = N/ gcd (Q′

r−1, N) in increasing order for 1 ≤ i ≤ r.

B More Details About the Experimental Results

More graphs about the experimental results are showed below. Firstly, as showed
in Figs. 1 and 2, upper bound on γ gets better when the lattice dimension
increases. For the direct method, upper bound on γ remains stable when the
lattice dimension is between 50 and 170. For the optimized method, the value is
between 60 and 300.

We then show the experimental results for r = 3 using the direct method in
Fig. 3. As the size of the modulus increases, γ finally arrives around 0.113. This
value is beyond the asymptotic bound 1

9 of previous Zhang-Takagi method.
The remaining graphs are related to the experiments for 3 ≤ r ≤ 7 with var-

ious moduli using the optimized method. The lattice dimension of each experi-
ment is set around 300. From Figs. 4, 5, 6, 7 and 8, we find that upper bound on
γ is higher for smaller modulus and then goes to a lower value. Also it will finally
arrive at a certain value that may be determined by the lattice dimension.

Another observation is that these lattices whose dimension is around 300
seem less effective for moduli with larger bit-size. To be specific, it is less effective
for the moduli of greater than 500-bit when r = 3. The critical bit-size is 700-bit
for r = 4, 5 and 1000-bit for r = 6, 7. Thus, we guess that the lattices used in
our experiments are effective for the prime factor of less than 160-bit. To obtain
desired upper bounds, we need to apply some lattices with huge dimension.
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Fig. 1. The experimental results of upper bound on γ with various lattice dimensions
and the same bit-size moduli for r = 3 using the direct method

Fig. 2. The experimental results of upper bound on γ with various lattice dimensions
and the same bit-size moduli for r = 4 using the optimized method
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Fig. 3. The experimental results of upper bound on γ with various moduli for r = 3
using the direct method

Fig. 4. The experimental results of upper bound on γ with various moduli for r = 3
using the optimized method
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Fig. 5. The experimental results of upper bound on γ with various moduli for r = 4
using the optimized method

Fig. 6. The experimental results of upper bound on γ with various moduli for r = 5
using the optimized method
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Fig. 7. The experimental results of upper bound on γ with various moduli for r = 6
using the optimized method

Fig. 8. The experimental results of upper bound on γ with various moduli for r = 7
using the optimized method
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