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Abstract. The standard RSA scheme provides the key equation ed ≡ 1
(mod ϕ(N)) for N = pq, where ϕ(N) = (p − 1)(q − 1) is Euler quotient
(or Euler’s totient function), e and d are the public and private keys,
respectively. It has been extended to the following variants with modified
Euler quotient ω(N) = (p2 − 1)(q2 − 1), which in turn indicates the
modified key equation is ed ≡ 1 (mod ω(N)).

– An RSA-type scheme based on singular cubic curves y2 ≡ x3 + bx2

(mod N) for N = pq.
– An extended RSA scheme based on the field of Gaussian integers for

N = PQ, where P , Q are Gaussian primes with p = |P |, q = |Q|.
– A scheme working in quadratic field quotients using Lucas sequences

with an RSA modulus N = pq.
In this paper, we investigate some key-related attacks on such RSA vari-
ants using lattice-based techniques. To be specific, small private key
attack, multiple private keys attack, and partial key exposure attack are
proposed. Furthermore, we provide the first results for multiple private
keys attack and partial key exposure attack when analyzing the RSA
variants with modified Euler quotient.

Keywords: RSA variants · Modified Euler quotient · Lattice
Multiple private keys attack · Partial key exposure attack

1 Introduction

1.1 Background

RSA [30] is currently one of the most widely used public key cryptosystems in
the world. In the case of the standard RSA, a public modulus N is the product
of two large primes p and q of the same bit-size, namely N = pq. The key
equation is ed ≡ 1 (mod ϕ(N)), where ϕ(N) = (p − 1)(q − 1) is Euler quotient
(or Euler’s totient function), (N, e) and (p, q, d) are called the public and private
keys, respectively. In the encryption process, a message string is transformed into
an integer M and then encrypted as C = Me (mod N). The decryption process
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computes Cd (mod N). Since e and d are always calculated as exponents in the
encryption and decryption phases, they are called public and private exponents
as well. In the following analyses, we further use α and δ for simplicity, whose
values come from e = Nα and d = N δ.

The standard RSA cryptosystem has been generalized by various approaches
such as modifying its modulus [35], modifying Euler quotient [13,23] and modi-
fying the encryption/decryption process [15,28] for specific purposes. This paper
focuses on the RSA variants with modified Euler quotient ω(N) = (p2−1)(q2−1)
for N = pq. We provide the modified key equation used in such RSA variants,
which shows the relation ed ≡ 1 (mod ω(N)) between ω(N) and two integers e
and d. It can be rewritten as

ed = k(p2 − 1)(q2 − 1) + 1, (1)

where k is an unknown positive integer. In the general cases, we have 0 < α, δ < 2
since 0 < e, d < ω(N) ≈ N2. But, α and δ can be generated to exceed above
range for some security considerations. Next, we briefly introduce three related
schemes. One may refer to [7,13,23] for more details.

The First Variant. This RSA variant was introduced by Kuwakado et al. [23] in
1995. It is based on singular cubic curves with y2 ≡ x3 + bx2 (mod N) for an
RSA modulus N = pq and b ∈ Z/NZ. The public exponent e and the private
exponent d satisfy gcd(e, (p2−1)(q2−1)) = 1 and d ≡ e−1 (mod (p2−1)(q2−1)).
Thus, we have ed = k(p2 − 1)(q2 − 1) + 1 for a positive integer k from the key
generation algorithm.

The Second Variant. This variant was introduced by Elkamchouchi et al. [13] in
2002. It is based on the ring of Gaussian integers Z[i]. A Gaussian integer a + bi
is a complex number for integers a, b and i2 = −1, whose norm is defined by
|a+ bi| =

√
a2 + b2. The RSA cryptosystem can be extended over the domain of

Gaussian integers because of the similar property and arithmetical operations.
Let modulus N be the product of two Gaussian primes P,Q and let e, d be
integers satisfying d ≡ e−1 (mod (|P |2−1)(|Q|2−1)). Note that the key equation
is ed = k(|P |2 − 1)(|Q|2 − 1)+1 for a positive integer k. When denoting |P | and
|Q| by p and q respectively, we have the same modified key equation as derived
in the first variant.

The Third Variant. This variant was introduced by Castagnos [7] in 2007. It is
based on an RSA modulus N = pq and Lucas sequences working in quadratic
field quotients. Let e be an integer satisfying gcd(e, (p2−1)(q2−1)) = 1. Though
the inverse d = e−1 (mod (p2 − 1)(q2 − 1)) does not explicitly appear in this
scheme, we can analyze its security by solving ed = k(p2 − 1)(q2 − 1) + 1 for
small d.

Small Private Key Attack. In 1990, Wiener [40] showed that one can break
the standard RSA scheme when the private key d is less than 1

3N0.25. Wiener’s
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attack utilizes the continued fraction approach to deal with the key equation
ed = k(p−1)(q−1)+1. If d is small enough, k/d will be one of the convergents of
the continued fraction expansion of the public rational fraction e/N . Thus, k and
d can be recovered by computing the continued fraction expansion. Furthermore,
[6] presented a new improved attack on RSA based on Wiener’s technique using
continued fraction.

Later in 1999, Boneh and Durfee [3] introduced the small inverse problem
and proposed an improved attack using Coppersmith’s lattice-based techniques
[10] that works for d < N0.292. The aim is to find the small roots of the modular
equation x(y + A) + 1 ≡ 0 (mod e) with known A and e. Herrmann and May
[17] presented an optimized algorithm to solve the same equation using the
linearization technique, which is applied to obtain smaller dimensional lattices.
Though the latter attack does not improve the insecure bound, it simplifies the
lattice construction and reduces the practical consumption.

The small private key attacks on several RSA variants have also been studied
in [31–33]. As for the RSA variants with modified Euler quotient ω(N) = (p2 −
1)(q2 − 1), Bunder et al. [5] proposed an attack using the continued fraction
approach. They showed that when d2e < 2N3 − 18N2, k/d can be found among
the convergents of the continued fraction expansion of e/(N2 − 9

4N + 1). Thus,
the factorization of N , namely p and q can be deduced from k and d. Peng et al.
[27] proposed a better lattice-based attack and improved the insecure bound to
δ < 2 − √

α for α ≥ 1. The attack is reduced to solving small roots (k, p2 + q2)
of the modular equation x(N2 + 1 − y) + 1 ≡ 0 (mod e) using the linearization
technique of [17]. Though Peng et al. gave a refinement on the insecure bound of
the small private exponent, they did not present a complete range of solvable α.

Multiple Private Keys Attack. The security of RSA with multiple key pairs
was first studied by Howgrave-Graham and Seifert [19] in 1999. In this case,
where given n multiple key pairs (e1, d1), . . . , (en, dn) for a common public mod-
ulus N such that eidi ≡ 1 (mod ϕ(N)) for all i = 1, 2, . . . , n, the standard RSA
can be viewed as the special case for n = 1. Similarly, the values of the public
and private keys are estimated as Nα and N δ, respectively.

Later, this attack type was improved by the lattice-based techniques in [1,
36]. The previous works confirm an intuitive inference that RSA becomes more
vulnerable when there are more key pairs. Takayasu and Kunihiro [36] proposed
the best attack so far that works for δ < 1 − √

2/(3n + 1) when given N and
public keys e1, . . . , en ≈ N . If there are even more key pairs, larger secret keys
can be recovered, which indicates that full-size private keys i.e. δ = 1 can be
recovered with infinitely many key pairs.

The multiple private keys attack has been extended to other RSA variants
in several papers like [26,41]. However, to attack the RSA variant with modified
Euler quotient with multiple key pairs is not analyzed before.

Partial Key Exposure Attack. In 1998, Boneh et al. [4] proposed several
attacks on RSA given a fraction of the private key bits with small public exponent
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e. Their attacks utilized some known most significant bits (MSBs) or some known
least significant bits (LSBs) of the private exponent d. In practice, above par-
tial key information can be captured using side channel attacks, e.g. cold boot
attacks [16] and others [22,29]. Therefore, so-called partial key exposure attack
has gradually become an important part when estimating the security of RSA.

Blömer and May [2] later improved partial key exposure attacks on RSA
using Coppersmith’s lattice-based techniques [10]. They showed that RSA is
also vulnerable to larger public exponent e given some private key exposure. In
2005, Ernst et al. [14] presented several new attacks that work up to full-size
exponents (i.e., e ≈ N or d ≈ N) by three theorems under a common heuristic
assumption. The best-known attack was proposed by Takayasu and Kunihiro
[37,39], which can achieve Boneh and Durfee’s bound [3] of the small private
key attack.

In addition to the partial key exposure attacks on the standard RSA scheme,
this attack type has been extended to other RSA variants in several papers like
[34]. However, the partial key exposure attack on the RSA variant with modified
Euler quotient is not considered before.

1.2 Our Contributions

In this paper, we first derive the crucial modular equation in our analyses from
the modified key Eq. 1. We have ed = k(p2q2 − p2 − q2 + 1) + 1, which can be
rewritten as ed = k

(
(N + 1)2 − (p + q)2

)
+ 1. Thus, we are required to solve

x(y + A) + 1 ≡ 0 (mod e) (2)

for A := (N + 1)2 with small roots x = k and y = −(p + q)2. Note that our
modular equation is slightly different compared with the root y = p2 + q2 used
in [27].

Then we apply the lattice-based techniques [10] to solve the crucial modular
Eq. 2 for some interesting cases. To be specific, we propose three key-related
attacks on the RSA variants with modified Euler quotient. We reproduce the
small private key attack as the result of [27] using the linearization technique
[17] for an accurate range of solvable α.

Proposition 1. Let N = pq be an RSA modulus with two prime factors p, q of
the same bit-size. Let e = Nα be a valid public key and d = N δ be its corre-
sponding private key such that ed ≡ 1 (mod (p2 − 1)(q2 − 1)). Then modulus N
of the RSA variants with modified Euler quotient can be efficiently factored if

δ < 2 − √
α for 1 ≤ α < 4.

We further provide the result of multiple private keys attack on the RSA
variants with modified Euler quotient for the first time.

Proposition 2. Let N = pq be an RSA modulus with two prime factors p, q
of the same bit-size. Let ei = Nα be a valid public key and di = N δ be its
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corresponding private key such that eidi ≡ 1 (mod (p2 − 1)(q2 − 1)) for 1 ≤ i ≤
n. Then modulus N of the RSA variants with modified Euler quotient can be
efficiently factored if

δ < 2 −
√

4α

3n + 1
for

4
3n + 1

< α < 3n + 1.

When we have one single key pair, namely n = 1, the condition becomes δ <
2 − √

α, which is identical to that in Proposition 1.
We also show the result of partial key exposure attack on the RSA variants

with modified Euler quotient for the first time.

Proposition 3. Let N = pq be an RSA modulus with two prime factors p, q of
the same bit-size. Let e = Nα be a valid public key and d = N δ be its correspond-
ing private key such that ed ≡ 1 (mod (p2−1)(q2−1)). Given an approximation
d̃ with known MSBs dM = NγM , LSBs dL = NγL and unknown d̂ = N δ−γ (for
γ = γM + γL) such that d = d̃ + d̂L = dMM + d̂L + dL for M := 2(δ−γM ) log2 N

and L := 2γL log2 N . Then modulus N of the RSA variants with modified Euler
quotient can be efficiently factored if

δ <
3γ + 7 − 2

√
3α + 3γ + 1

3
.

We summarize our upper bounds with comparative cryptanalytic results on
the standard RSA in Table 1. For simplicity, we set full-size public keys, namely
e ≈ N in standard RSA and e ≈ N2 in RSA variants with ω(N) to show the
respective conditions on δ. More precisely, n indicates the number of given key
pairs in multiple private keys attack and γ (or Nγ) indicates the known key
exposure in partial key exposure attack.

Table 1. Summary of three key-related attacks on RSA and its variant

Standard RSA [30] RSA variants [7,13,23]

Small private key attack δ < 0.292 [3] δ < 0.585

Multiple private keys attack δ < 1 −
√

2
3n+1

[36] δ < 2 −
√

8
3n+1

Partial key exposure attack δ <
γ+2−

√
2−3γ2

2
[37] δ < 3γ+7−2

√
3γ+7

3

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we review some facts and
mathematical lemmas of lattice-based attacks. In Sect. 3, we present our small
private key attack in details. In Sect. 4, we propose the multiple private keys
attack on such RSA variants by applying Minkowski sum technique. In Sect. 5,
we propose the partial key exposure attack for such RSA variants. We conclude
the paper in Sect. 6.
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2 Preliminaries

In this section, we introduce some notions of the lattice-based attacks, which
include the LLL algorithm [24], Howgrave-Graham’s lemma [18], Coppersmith’s
techniques [8,9]. One may refer to [10,25] for more details.

A lattice L spanned by linearly independent vectors b1, . . . , bw in R
n is the

set of their integer linear combinations, which is denoted by L(b1, . . . , bw) =
{∑w

i=1 zibi : zi ∈ Z}. We call (b1, . . . , bw) a basis of L and w is the lattice
dimension. If w = n, then L is called full-rank. In another way, bi’s can be
regarded as row vectors to generate a basis matrix B. The lattice determinant
is defined as det(L) :=

√
det(BBT), where BT is a transpose of B. We have

det(L) = |det(B)| for a full-rank lattice from the definition, which implies that
B is a square matrix. Moreover, the determinant of a triangular basis matrix
can be easily computed as the product of its diagonal entries.

In 1982, Lenstra et al. [24] proposed the so-called LLL algorithm that is
practically used for finding approximately shortest lattice vectors, which plays
an important role in the field of lattice-based cryptanalyses.

Lemma 1. Let L be a lattice with determinant det(L) and vectors in R
n. The

LLL algorithm outputs a reduced basis (v1,v2, . . . ,vw) in polynomial time in
n,w and input length. For 1 ≤ i ≤ w, the reduced vectors vi’s satisfy

‖vi‖ ≤ 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i .

Howgrave-Graham [18] later showed how to judge whether the roots of a
modular equation are also roots over the integers. This reformulation is more
concise and straightforward compared with Coppersmith’s original methods. For
a given n-variate polynomial g(x1, . . . , xn) =

∑
ai1,...,inxi1

1 · · · xin
n , its norm is

defined as ‖g(x1, . . . , xn)‖ :=
√∑ |ai1,...,in |2. We provide the following lemma

and then discuss the combination of Lemmas 1 and 2.

Lemma 2. Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an integer polynomial that is a
sum of at most w monomials. Suppose that

1. g(x′
1, . . . , x

′
n) = 0 (mod R), where |x′

1| < X1, . . ., |x′
n| < Xn, and

2. ‖g(x1X1, . . . , xnXn)‖ < R/
√

w.

Then g(x′
1, . . . , x

′
n) = 0 holds over the integers.

The main idea of the lattice-based attacks is to construct a set of shift poly-
nomials modulo an integer R with the common roots and then reduce them
to several equations over the integers by the LLL algorithm. The basis matrix
consists of the shift polynomials’ coefficient vectors, which come from a given
modular equation. It spans a lattice of dimension w and we use the LLL algo-
rithm to obtain short lattice vectors that correspond to the polynomial forms. If
the norms of the polynomials are sufficiently small, these equations still hold over
the integers. Eventually, we can efficiently extract the common roots by Gröbner
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bases computation or resultant computation. Notice that the linearization tech-
nique makes it easier to construct a triangular matrix and hence simplifies the
whole analysis.

The above fundamental lemmas indicate the final condition, which can be
roughly summarized as

det(L) < Rw. (3)

We here do not discuss more how to solve integer polynomial equations since
it makes use of the essential idea of solving modular equations by adding an
auxiliary parameter. See Coron’s reformulations [11,12] for the detail. We should
note that solving multivariate equations is heuristic because the newly derived
polynomials are not guaranteed to be algebraically independent. In this paper,
we assume that the polynomials derived from the reduced vectors of the LLL
algorithm are algebraically independent as discussed in the literature of lattice-
based attacks on RSA and its variants [3,21]. In fact, there are barely works that
contradict this assumption.

3 Small Private Key Attack

In this section, we aim to solve the crucial modular Eq. 2 for sufficient small pri-
vate key d. Applying the linearization technique, we can reproduce the insecure
bound on d for the RSA variants with modified Euler quotient.

In order to find all small roots (x, y) of the bivariate modular equation xy +
Ax+1 ≡ 0 (mod e). We first transform the original polynomial xy+Ax+1 into
Ax + z by letting z := xy + 1. The shift polynomials g[i,j,k](x, y, z) are defined
in the following form for f(x, y, z) := Ax + z,

g[i,j,k](x, y, z) := xiyjfk(x, y, z)es−k = xiyj(Ax + z)kes−k,

where s is a fixed positive integer and i, j, k ∈ N. We denote the set of shift
polynomials by G ∪ H for

G := {g[i,j,k](x, y, z) : (i, j, k) ∈ IG},

H := {g[i,j,k](x, y, z) : (i, j, k) ∈ IH},

where two index sets IG and IH are defined by

IG := {(i, j, k) : j = 0; i = 0, . . . , s; k = 0, . . . , s − i},

IH := {(i, j, k) : i = 0; k = 0, . . . , s; j = 1, . . . , τk},

for a parameter 0 ≤ τ ≤ 1 to be optimized later. It is clear that all the shift
polynomials share the small roots modulo es. The polynomial and monomial
orders ≺ are defined as g[i,j,k] ≺ g[i′,j′,k′] and xiyjzk ≺ xi′

yj′
zk′

, respectively if
(1) i + k < i′ + k′; or (2) i + k = i′ + k′ and k < k′; or (3) i = i′, k = k′ and
j < j′.

We can substitute each occurrence of xy by the term z − 1. The lattice basis
matrix is generated by taking the coefficient vectors of g[i,j,k](xX, yY, zZ) as
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row vectors, where X,Y and Z denote the upper bounds on the roots (x, y, z).
Additionally, the rows and columns are arranged according to above orders ≺,
which guarantees that the lattice basis matrix is triangular. Table 2 shows a toy
example for two parameters s = 2 and τ = 1, where symbols “–” indicate the
non-zero off-diagonal entries, and f denotes AxX + zZ.

Table 2. A toy example of the lattice basis matrix for s = 2 and τ = 1

1 x z yz x2 xz z2 yz2 y2z2

g[0,0,0] e2 e2

g[1,0,0] xXe2 e2X

g[0,0,1] fe – eZ

g[0,1,1] yY f – – Y Z

g[2,0,0] (xX)2e2 e2X2

g[1,0,1] xXfe – eXZ

g[0,0,2] f2 – – Z2

g[0,1,2] yY f2 – – – – Y Z2

g[0,2,2] (yY )2f2 – – – – – Y 2Z2

Since we have e = Nα and d = N δ, we can figure out X = Nα+δ−2, Y = N
and Z = Nα+δ−1. We are able to compute the determinant det(L) by counting
the numbers of X, Y , Z and e appearing in the diagonal entries respectively,
which signify the contributions of the shift polynomials to det(L). We omit the
rounding of τk since it is negligible in our asymptotic analysis for sufficiently
large s.

We compute the dimension w of the full-rank lattice and the contributions
of the shift polynomials denoted by nX , nY , nZ and ne, respectively.

w =
∑

(i,j,k)∈IG∪IH

1 =
s∑

i=0

s−i∑

k=0

1 +
s∑

k=0

τk∑

j=1

1 =
1 + τ

2
s2 + o(s2),

nX =
∑

(i,j,k)∈IG∪IH

i =
s∑

i=0

s−i∑

k=0

i =
1
6
s3 + o(s3),

nY =
∑

(i,j,k)∈IG∪IH

j =
s∑

k=0

τk∑

j=1

j =
τ2

6
s3 + o(s3),

nZ =
∑

(i,j,k)∈IG∪IH

k =
s∑

i=0

s−i∑

k=0

k +
s∑

k=0

τk∑

j=1

k =
1 + 2τ

6
s3 + o(s3),

ne =
∑

(i,j,k)∈IG∪IH

(s − k) =
s∑

i=0

s−i∑

k=0

(s − k) +
s∑

k=0

τk∑

j=1

(s − k) =
2 + τ

6
s3 + o(s3).
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From above rough condition 3 det(L) < Rw for det(L) = XnXY nY ZnZene and
R = es, we have

(α + δ − 2) + τ2 + (1 + 2τ)(α + δ − 1) + (2 + τ)α < 3(1 + τ)α,

when dealing with the exponents and omitting other lower order terms of s. It
can be simplified to

τ2 + (2δ − 2)τ + α + 2δ − 3 < 0.

The value of the left side reaches its minimum by setting τ = 1− δ and then the
inequality becomes

δ2 − 4δ − α + 4 > 0.

Therefore, we obtain the final condition

δ < 2 − √
α.

Note that 0 ≤ τ = 1 − δ ≤ 1 and hence we have 0 ≤ δ ≤ 1. Combining it with
α + δ ≥ 2 and δ < 2 − √

α, we have 1 ≤ α < 4 that is our complete solvable
range of α. Thus, we attain the bound of Proposition 1 as required.

4 Multiple Private Keys Attack

In this section, we propose the multiple private keys attack on the RSA variants
with modified Euler quotient. To specify the analytic situation for given n key
pairs, we define the following general multiple private keys attack scenario.

Let N be the product of two primes p, q of the same bit-size. Let ei = Nα

and di = N δ for 1 ≤ i ≤ n such that eidi ≡ 1 (mod ω(N)), where ω(N) =
(p2 − 1)(q2 − 1). Given N and n key pairs (ei, di) (for 1 ≤ i ≤ n), the goal is to
efficiently factor N .

In this case, we need to solve the simultaneous modular equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x1, y) : = x1(y + A) + 1 ≡ 0 (mod e1)
f2(x2, y) : = x2(y + A) + 1 ≡ 0 (mod e2)

...
fn(xn, y) : = xn(y + A) + 1 ≡ 0 (mod en)

(4)

for A := (N + 1)2 and the roots (x1, x2, . . . , xn, y) = (k1, k2, . . . , kn,−(p + q)2)
whose values are bounded by X1 = · · · = Xn = Nα+δ−2 and Y = N .

To deal with above simultaneous modular Eq. 4, Aono [1] proposed
Minkowski sum based lattice constructions. We also apply this tool to provide
the generation of the shift polynomials. The underlying shift polynomials are
defined by

g
(k)
ik,jk

(xk, y) := xik−jk
k f jk

k (xk, y)es−jk
k



Cryptanalysis of RSA Variants with Modified Euler Quotient 275

with 0 ≤ jk ≤ ik ≤ s and ik, jk ∈ N for 1 ≤ k ≤ n. It is clear that we have
g
(k)
ik,jk

(xk, y) ≡ 0 (mod es
k) for each k. We define the same Minkowski sum based

shift polynomials as [1] by

gi1,...,in,j(x1, . . . , xn, y) :=
∑

j1+···+jn=j

aj1,...,jng
(1)
i1,j1

g
(2)
i2,j2

· · · g(n)in,jn

for a particular aj1,...,jn such that the corresponding diagonal entry in the basis
matrix is

Xi1
1 · · · Xin

n Y je
s−min{i1,j}
1 · · · es−min{in,j}

n .

Thus, all the shift polynomials share the common roots (x1, x2, . . . , xn, y) =
(k1, . . . , kn,−(p + q)2) modulo (e1 · · · en)s. We consider the shift polynomials
with max{i1, . . . , in} ≤ j. Applying a useful criterion from [36], we compare the
sizes of the diagonal entries with the size of the modulus to choose as many
helpful polynomials as possible. It requires that

Xi1
1 · · · Xin

n Y jes−i1
1 · · · es−in

n ≤ (e1 · · · en)s,

which leads to

(α + δ − 2)
n∑

k=1

ik + j + αns − α
n∑

k=1

ik ≤ αns.

That is j ≤ (2 − δ)
∑n

k=1 ik. Therefore, we select the shift polynomials over the
index set

I := {(i1, . . . , in, j) : 0 ≤ i1, i2, . . . , in ≤ s; 0 ≤ j ≤ (2 − δ)
n∑

k=1

ik}.

The lattice basis matrix is triangular as discussed in [1,36]. We follow a simi-
lar analysis in Sect. 3 (ignoring lower order terms of s) to compute the lattice
dimension

w =
∑

(i1,...,in,j)∈I
1 =

n(2 − δ)
2

sn+1,

and respective contributions of the diagonal entries to the determinant that are
denoted by nXk

, nY and nek
for 1 ≤ k ≤ n,

nX1 = · · · = nXn
=

∑

(i1,...,in,j)∈I
ik =

(3n + 1)(2 − δ)
12

sn+2,

nY =
∑

(i1,...,in,j)∈I
j =

n(3n + 1)(2 − δ)2

24
sn+2,

ne1 = · · · = nen
=

∑

(i1,...,in,j)∈I
(s − min{in, j}) =

2 + (3n − 1)(2 − δ)
12

sn+2.
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We can find solutions of the simultaneous modular Eq. 4 if the condition 3 holds,
that is

X
nX1
1 · · · XnXn

n Y nY e
ne1
1 · · · enen

n < (e1 · · · en)sw,

which leads to

2n(3n + 1)(2 − δ)(α + δ − 2) + n(3n + 1)(2 − δ)2 + n(4 − (6n + 2)(2 − δ))α < 0.

It can be reduced to
−(3n + 1)(2 − δ)2 + 4α < 0.

Finally, we derive the condition for the multiple private keys attack scenario

δ < 2 −
√

4α

3n + 1
.

The range of solvable α is determined by 2−
√

4α
3n+1 > 0 and α+2−

√
4α

3n+1 > 2,
which imply

4
3n + 1

< α < 3n + 1

as claimed in Proposition 2.

5 Partial Key Exposure Attack

In this section, we propose the partial key exposure attack on the RSA variants
with modified Euler quotient. To specify the analytic situation for given leakage
of the private key, we define the following general partial key exposure attack
scenario.

Let N be the product of two primes p, q of the same bit-size. Let e = Nα and
d = N δ such that ed ≡ 1 (mod ω(N)), where ω(N) = (p2 − 1)(q2 − 1). Given
N, e and d̃ (i.e. MSBs dM and LSBs dL) that is a known approximation of d
satisfying

d = d̃ + d̂L = dMM + d̂L + dL

for M := 2(δ−γM ) log2 N and L := 2γL log2 N , which implies that |d̂| < N δ−γ for
γ := γM + γL, the target is to efficiently factor N .

Recall that the modified key Eq. 1 is ed = k(p2 − 1)(q2 − 1) + 1. Since
d = d̃ + d̂L, we substitute it with its approximation and obtain

e(d̃ + d̂L) = k(p2 − 1)(q2 − 1) + 1.

We now focus on the integer equation

f(x, y, z) := 1 − ed̃ + eLx + y((N + 1)2 + z) (5)

with small roots x = −d̂, y = k and z = −(p + q)2, whose values are bounded
by X = N δ−γ , Y = Nα+δ−2 and Z = N , respectively. If we discover the small
roots of f(x, y, z), we can factor the RSA modulus N .
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We turn to solving the integer polynomial 5 by applying Jochemsz and May’s
strategy [20]. A similar construction is also described in [39]. We first give the
definition of the auxiliary parameter W := ‖f(xX, yY, zZ)‖∞, namely l∞-norm
of a certain polynomial. For our integer polynomial 5, we have

W = max{|1 − ed̃|, |eLX|, |Y (N + 1)2|, |Y Z|} = Nα+δ.

We set a suitable integer R := WXs−1Y s−1Zs−1+τs (as a modulus) for a fixed
positive integer s and τ ≥ 0 to be optimized later. We then perform a transfor-
mation on the original polynomial 4 by

f ′(x, y, z) := (1 − ed̃)−1f(x, y, z) (mod R).

The shift polynomials gG
[i,j,k](x, y, z) and gH

[i,j,k](x, y, z) are defined in the follow-
ing forms,

gG
[i,j,k](x, y, z) := xiyjzkf ′(x, y, z)Xs−1−iY s−1−jZs−1+τs−k,

gH
[i,j,k](x, y, z) := xiyjzkR,

for i, j, k ∈ N. We denote the set of shift polynomials by G ∪ H, where

G := {gG
[i,j,k](x, y, z) : (i, j, k) ∈ IG},

H := {gH
[i,j,k](x, y, z) : (i, j, k) ∈ IH \ IG},

for two index sets IG and IH defined by

IG := {(i, j, k) : i = 0, . . . , s − 1; j = 0, . . . , s − 1 − i; k = 0, . . . , j + τs},

IH := {(i, j, k) : i = 0, . . . , s; j = 0, . . . , s − i; k = 0, . . . , j + τs}.

It is noticeable that all the shift polynomials share the common roots (x, y, z) =
(−d̂, k,−(p + q)2) modulo R. The polynomial and monomial orders are quite
straightforward as mentioned in [20]. Therefore, we can construct a triangular
basis matrix with diagonal entries Xs−1Y s−1Zs−1+τs for G and XiY jZkR =
WXs−1+iY s−1+jZs−1+τs+k for H. We then follow a similar analysis in Sect. 3
(ignoring lower order terms of s) to compute the lattice dimension

w =
∑

(i,j,k)∈IG

1 +
∑

(i,j,k)∈IH\IG

1 =
1 + 3τ

6
s3.

Recall that the rough condition 3 det(L) < Rw indicates
∏

(i,j,k)∈IG

Xs−1Y s−1Zs−1+τs
∏

(i,j,k)∈IH\IG

WXs−1+iY s−1+jZs−1+τs+k

<
(
WXs−1Y s−1Zs−1+τs

)w
.
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Thus, we can find solutions of the integer Eq. 5 when XnXY nY ZnZ < WnW

(ignoring lower order terms of s) for

nX =
∑

(i,j,k)∈IG

(s − 1) +
∑

(i,j,k)∈IH\IG

(s − 1 + i) − (s − 1)w =
1 + 3τ

6
s3,

nY =
∑

(i,j,k)∈IG

(s − 1) +
∑

(i,j,k)∈IH\IG

(s − 1 + j) − (s − 1)w =
2 + 3τ

6
s3,

nZ =
∑

(i,j,k)∈IG

(s − 1 + τs) +
∑

(i,j,k)∈IH\IG

(s − 1 + τs + k) − (s − 1 + τs)w

=
1 + 3τ + 3τ2

6
s3,

nW = w −
∑

(i,j,k)∈IH\IG

1 =
∑

(i,j,k)∈IG

1 =
1 + 3τ

6
s3.

Substituting them for the inequality, we obtain

(1 + 3τ)(δ − γ) + (2 + 3τ)(α + δ − 2) + (1 + 3τ + 3τ2) < (1 + 3τ)(α + δ),

which leads to

3τ2 + (3δ − 3γ − 3)τ + α + 2δ − γ − 3 < 0.

The value of the left side reaches its minimum by setting τ = (1 + γ − δ)/2 and
we have

δ <
3γ + 7 − 2

√
3α + 3γ + 1

3
as claimed in Proposition 3.

It is also possible to apply known bounds given in [20, Appendix B] to solve
an integer polynomial of special forms including our integer polynomial 5. We
provide a useful lemma as follows.

Lemma 3. Let f(x1, x2, x3) = a0+a1x1+x2(a2+x3) ∈ Z[x1, x2, x3] be an inte-
ger polynomial. Suppose that x1, x2, x3 are bounded by X1,X2,X3 respectively,
and W = max{|a0|, |a1|X1, |a2|X2,X2X3}. Then the roots can be found for an
optimized τ ≥ 0 if

X1+3τ
1 X2+3τ

2 X1+3τ+3τ2

3 < W 1+3τ .

We directly apply Lemma 3 with X1 = N δ−γ , X2 = Nα+δ−2, X3 = N and
W = Nα+δ for our attack and have

(1 + 3τ)(δ − γ) + (2 + 3τ)(α + δ − 2) + (1 + 3τ + 3τ2) < (1 + 3τ)(α + δ),

that is equivalent to

3τ2 + (3δ − 3γ − 3)τ + α + 2δ − γ − 3 < 0,

which gives the same result as stated in Proposition 3.
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6 Concluding Remarks

We study some key-related attacks on the RSA variants with modified Euler
quotient ω(N) = (p2 − 1)(q2 − 1) in this paper. Some interesting cases such
as given more key pairs and given some key exposure are analyzed like previous
works in the literature. We propose the multiple private keys attack that extends
the small private key attack for n key pairs. Since the case of n = 1 corresponds
to the small private key attack, it is a meaningful extension of the latter.

For the partial key exposure attack, a preliminary result is provided assum-
ing we already know some most and least significant bits of the private key.
However, there exist several methods to improve the results for given only the
most significant bits or the least significant bits like [39]. A combined scenario
i.e. partial key exposure attack with multiple key pairs has also been analyzed
in [38]. To generalize partial key exposure attacks with only MSBs, LSBs or
multiple key pairs on the RSA variants with modified Euler quotient remains as
future work.
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