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PAPER
Lattice-Based Cryptanalysis of RSA with Implicitly Related Keys∗

Mengce ZHENG†a), Nonmember, Noboru KUNIHIRO††, Senior Member, and Honggang HU†, Nonmember

SUMMARY We address the security issue of RSA with implicitly re-
lated keys in this paper. Informally, we investigate under what condition
is it possible to efficiently factorize RSA moduli in polynomial time given
implicit relation of the related private keys that certain portions of bit pattern
are the same. We formulate concrete attack scenarios and propose lattice-
based cryptanalysis by using lattice reduction algorithms. A subtle lattice
technique is adapted to represent an unknown private key with the help of
known implicit relation. We analyze a simple case when given two RSA
instances with the known amount of shared most significant bits (MSBs)
and least significant bits (LSBs) of the private keys. We further extend to a
generic lattice-based attack for givenmore RSA instances with implicitly re-
lated keys. Our theoretical results indicate that RSA with implicitly related
keys is more insecure and better asymptotic results can be achieved as the
number of RSA instances increases. Furthermore, we conduct numerical
experiments to verify the validity of the proposed attacks.
key words: RSA, implicitly related keys, cryptanalysis, factorization, lattice

1. Introduction

Background. The RSA cryptosystem [31] plays an impor-
tant role in the area of public-key cryptography and informa-
tion security due to its simplicity and popularity. In the stan-
dard RSA scheme, the key equation is ed ≡ 1 (mod ϕ(N )),
where N , e, d and ϕ(N ) are defined as follows. N is the
product of two large primes p, q of the same bit-size. (N, e)
and (p, q, d) denote the public and private keys, respectively.
e and d are also called the public (or encryption) and pri-
vate (or decryption) exponents. ϕ(N ) = (p − 1)(q − 1) is
Euler’s totient function. To encrypt an integer m, one needs
to compute c = me (mod N ). To decrypt the ciphertext
c, one needs to compute cd (mod N ). The correctness of
cd = med = m (mod N ) is guaranteed by Euler’s theorem.
Its vulnerability was surveyed in [3] after two decades of
research into attacking the RSA cryptosystem.

In 1996, Coppersmith [7]–[9] made a significant break-
through based on finding small roots of modular and integer
polynomial equations. The fundamental works proposed
novel and advanced attacks on RSA using lattice reduc-
tion algorithms, e.g. the LLL algorithm [23]. The main
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method is known as lattice-based techniques and has been
widely applied in cryptanalyses of RSA and its variants af-
terwards. Many researchers proposed several nice attacks
such as [2], [4], [10], [11], [13], [21], [25], [39] etc. Among
them, the partial key exposure attack has been intensively
studied as an active attack scenario.

In 1998, Boneh et al. [5] proposed several attacks on
RSA given a fraction of the private key bits with small pub-
lic exponent e. Their attacks employed some known most
significant bits (MSBs) or some known least significant bits
(LSBs) of the private exponent d. In practice, above partial
key information can be captured using side channel attacks,
e.g. cold boot attacks [16] and others [22], [30]. There-
fore, the partial key exposure attack has gradually become
an important part when estimating the security of RSA.

In 2003, Blömer and May [2] improved partial key
exposure attacks on RSA using Coppersmith’s lattice-based
techniques. They showed that RSA is also vulnerable for
larger public exponent e given some private key exposure.
In 2005, Ernst et al. [13] presented several new attacks that
work up to full size exponents via three theorems under a
heuristic assumption. The best known attack was proposed
by Takayasu and Kunihiro [37], [38], which can achieve
Boneh-Durfee bound of small private exponent attack on
RSA [4]. In our opinion, partial key exposure attack can be
refined to the problem of factorizing RSA modulus with an
oracle that outputs some explicit information of the private
key d.

In 2009, May and Ritzenhofen [28] proposed the im-
plicit factorization problem to factorize RSAmoduli with an
oracle that provides implicit information about the prime fac-
tors. To be specific, for two different RSAmoduli N1 = p1q1
and N2 = p2q2 with α-bit qi’s and p1, p2 sharing at least
t LSBs, they proved that q1 and q2 can be recovered if
t > 2(α + 2) holds. Thus, N1 and N2 can be factorized
easily. They later extended the analysis to the case of k
moduli and improved the insecure bound to t > k

k−1α by
acquiring more oracle queries. This problem is mainly con-
sidered in the area of malicious generation of RSA moduli,
e.g. the construction of backdoor RSA moduli.

Later, other implicit information like shared MSBs and
sharedmiddle bits were studied by Faugére et al. [14]. Sarkar
and Maitra [34] proposed a new approach based on the idea
of solving approximate common divisor problem to further
improve the previous results. The best known attack was
proposed by Lu et al. [24], which made use of the following
tricky technique. They introduced a new variable to miti-
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gate the effect of large prime factors, which correspond to
unknown variables in the polynomial equations to be solved.
It is the first time that this problem can be experimentally
handled for balanced RSAmoduli. However, in order to suc-
cessfully factorize given three RSA moduli, one still needs
to know that pi’s share nearly 90% MSBs.
Implicit Related-Key Factorization Problem. Inspired by
the partial key exposure attack and the implicit factoriza-
tion problem, we raise an interesting problem how to ef-
ficiently factorize RSA moduli for given some implicit in-
formation about the related private keys. We present the
description of the implicit related-key factorization problem
as follows. Consider (N1, e1, d1), . . . , (Nn, en, dn) are n dis-
tinct key pairs, where N1, . . . , Nn are of the same bit-size and
their prime factors are all of the same bit-size. Given that
certain portions of bit pattern in the implicitly related pri-
vate keys d1, . . . , dn are common,† under what condition is
it possible to efficiently factorize N1, . . . , Nn. In this sense,
the implicit factorization problem can be refined into the
implicit related-prime factorization problem accordingly.

Some researchers have studied and extended previous
lattice-based attacks on RSA with more than one key pair
for a common modulus. Sarkar and Maitra [32], [33] studied
the weakness of RSA when given more RSA key pairs for
the same modulus. Aono [1] also gave improved bounds
by Minkowski sum based lattice construction. Takayasu
and Kunihiro [36] proposed better cryptanalytic results for
multiple small private exponents. Additionally, Hinek [18,
Chapter 4] studied another casewhen givenmanyRSAmod-
uli along with a common private key. Its implicit information
is that all the private keys are identical. Our problem can be
seen as an extension of above two special cases.

There are several situations of using more distinct RSA
instances in practice. For example, Dual RSA scheme pro-
posed in [35] is applied to blind signatures and authentica-
tion. Once such RSA instances are generated with imperfect
randomness or malicious backdoor keys, one may encounter
our implicit related-key factorization problem. Our motiva-
tions come from two aspects. On the one hand, side channel
attacks may not give explicit information like the exact bits
of the private keys as expected. Instead, one may know the
amounts of shared MSBs and LSBs of the private keys as
some implicit information. On the other hand, malicious
attackers may control backdoor keys rather than backdoor
RSA moduli. The users’ misuses of their private keys with
certain repeated bit patterns may lead to this problem as
well. Mainly from the theoretical view, our aim is to further
disclose the vulnerability of RSA with weaker condition and
enrich lattice-based cryptanalyses in the literature.
Our Contributions. Firstly, we provide the formalization of
the implicit related-key factorization problem. We identify a
hybrid problem based on the partial key exposure attack and
the implicit factorization problem. The formal description
will be provided shortly afterwards. Secondly, we propose

†The private keys are supposed of the same bit-size, otherwise
MSBs of the shorter ones can be padded with zero to make it true.

lattice-based cryptanalyses and several specific attacks. Our
cryptanalyses are based on Coppersmith’s techniques. In
addition to the fundamental techniques, we further adapt two
subtle lattice techniques, namely the linearization technique
and the splitting technique. We present lattice-based attacks
for given two RSA instances and extend a heuristic lattice
construction for given more RSA instances. Thirdly, we
provide verification by computer experiments. We justify
the validity of the proposed attacks by various numerical
experiments.

We formulate the implicit related-key factorization
problem using several RSA instances clearly. For n key
pairs of RSA parameters (Ni, ei, di) with 1 ≤ i ≤ n, we
consider the full size case of ei ≈ N , where N denotes an
integer of the same bit-size as Ni . Unless otherwise noted, N
denotes an integer of the same bit-size as given RSA moduli
in this paper. The moduli N1, . . . , Nn are assumed given in
descending order without loss of generality. Besides, we
assume di ≈ Nδ and all the private keys share MSBs of
bit-size (δ − β − γ) log2 N and LSBs of bit-size γ log2 N
leaving middle difference of bit-size β log2 N . To be spe-
cific, we assume the implicit relation is d j = di + dLd ji

for 1 ≤ i < j ≤ n with known value dL = 2 bγ log2 N c and
unknown value d ji satisfying |d ji | ≈ Nβ . The size relation
between δ, β and γ is 0 < β, γ, β + γ < δ. The goal of the
problem is to factorize the RSA moduli N1, . . . , Nn for given
public data (N1, e1, . . . , Nn, en) and known parameters δ, β
and γ.

We followCoppersmith’s techniques [9] to deal with the
implicit related-key factorization problem. Our attacks rely
on the following heuristic assumption, which is always men-
tioned in the literature. Because our lattice-based attacks
are eventually reduced to solving multivariate polynomial
equations, we assume that algebraically independent poly-
nomials can be obtained from our attacks throughout the
paper. Thus, the small roots can be efficiently extracted by
resultant computations or the Gröbner basis computations
[6].

Our main results are stated in Proposition 1 and Propo-
sition 2. We want to point out that the theoretical results
are asymptotic since we require the corresponding lattice
dimension to be preferably large. We first give the results
for given two RSA instances and then extend to more RSA
instances.

Proposition 1: Let N1 = p1q1 and N2 = p2q2 be given
two RSAmoduli of the same bit-size, where p1, q1, p2, q2 are
large primes of the same bit-size. Let e1, d1, e2, d2 be some
integers satisfying e1d1 ≡ 1 (mod (p1 − 1)(q1 − 1)) and
e2d2 ≡ 1 (mod (p2 − 1)(q2 − 1)) such that e1 ≈ e2 ≈ N and
d1 ≈ d2 ≈ Nδ . Given that d2 = d1 + dLd21 with |d21 | ≈ Nβ

and dL = 2 bγ log2 N c . Then N1 and N2 can be factorized in
polynomial time if

δ < max *
,

25 − 16β −
√

177 − 96β
32

,
2γ + 3 −

√
γ + 2

6
+
-
.

Proposition 2: Let Ni = piqi for 1 ≤ i ≤ n be given RSA
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moduli of the same bit-size, where pi and qi are large primes
of the same bit-size. Let ei and di be some integers satisfying
eidi ≡ 1 (mod (pi − 1)(qi − 1)) such that ei ≈ N and
di ≈ Nδ . Given the implicit information that d j = di+dLd ji

for 1 ≤ i < j ≤ n with |d ji | ≈ Nβ . Then given RSA moduli
can be factorized in polynomial time (but exponential in n)
if

δ <
1

4n3

(
2n3 + 2n2 + n − 1 − 4n2(n − 1) β

−

√
(2n − 1)(6n3 + 3n2 − 1 − 8n2(n − 1) β)

)
.

Actually, the formula presented in Proposition 2 covers that
in Proposition 1 for n = 2 with respect to β. But it does
not indicate the condition with respect to γ as we apply a
different approach for given more RSA instances.
Organizations. The rest of the paper is organized as fol-
lows. We provide some basic knowledge of Coppersmith’s
techniques and Gaussian heuristic in Sect. 2. In Sect. 3, we
propose three distinct attacks for given two RSA instances.
In addition to the proposed attacks, we discuss the differ-
ences and exhibit the superior one. In Sect. 4, we further
extend a heuristic lattice construction to analyze the case of
given n RSA instances. We verify the validity of the pro-
posed attacks by computer experiments in Sect. 5. Finally,
we conclude the paper in Sect. 6.

2. Preliminaries

In this section, we briefly introduce lattice, the LLL algo-
rithm [23] and Coppersmith’s techniques [9]. Moreover,
we provide a rough condition for finding the common small
roots of constructed polynomial equations and present the
splitting technique that is based on the Gaussian heuristic.

A lattice L spanned by linearly independent vectors ~b1,

. . . , ~bm ∈ Rn is the set of their integer linear combinations,
which is denoted by L(~b1, . . . , ~bm) =

{∑m
i=1 zi~bi : zi ∈ Z

}
.

These basis vectors derive a basis matrix B by regarding
each ~bi as row (or column) vectors. The determinant of L is
calculated as det(L) =

√
det(BBT ). m is the rank of L and

we always consider a full-rank lattice when m = n. Hence,
we have det(L) = | det(B) |.

The LLL lattice reduction algorithm proposed by
Lenstra, Lenstra and Lovász [23] is practically used for com-
puting approximately short lattice vectors due to its efficient
running outputs. We provide the following substratal lemma
from [26, Section 2.2 Theorem 4].

Lemma 1: Let lattice L be spanned by basis vectors
(~b1, . . . , ~bm). The LLL algorithm outputs a reduced basis
(~v1, . . . ,~vm) satisfying the following property in polynomial
time for 1 ≤ i ≤ m,

‖~v1‖, ‖~v2‖, . . . , ‖~vi ‖ ≤ 2
m(m−1)

4(m+1−i) det(L)
1

m+1−i .

Since Howgrave-Graham [20] refined on Coppersmith’s
techniques to propose a useful lemma, we directly give it

for judging whether the desired small roots of a modu-
lar equation are also roots over Z for a given polynomial
g(x1, . . . , xn) =

∑
ai1,...,in xi11 · · · x

in
n , whose norm is defined

as ‖g(x1, . . . , xn)‖ :=
√∑
|ai1,...,in |2.

Lemma 2: Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an integer
polynomial with at most m monomials. Suppose that

1. g(x ′1, . . . , x ′n) ≡ 0 (mod R), |x ′1 | ≤ X1, . . . , |x ′n | ≤ Xn,
2. ‖g(x1X1, . . . , xnXn)‖ < R/

√
m.

Then g(x ′1, . . . , x ′n) = 0 holds over the integers.

Combining Lemma 1 and Lemma 2, one can solvemod-
ular polynomial equations under a rough condition. One can
first construct shift polymonials from a knownmodular poly-
nomial. Then the shift polynomials’ coefficient vectors (with
known upper bounds on unknown variables) generate a lat-
tice basis matrix. In the next step, enough integer equations
are derived from short reduced vectors through the LLL al-
gorithm.

Consider that one can obtain the first t vectors, then one
can extract the solutions if 2

m(m−1)
4(m+1−t ) det(L)

1
m+1−t < R/

√
m,

which leads to det(L) < Rm+1−t2−
m(m−1)

4 m−
m+1−t

2 . Since we
always have t � m � R in lattice-based cryptanalyses, this
condition roughly reduces to

det(L) < Rm (1)

when we ignore the lower terms.
Under above rough condition (1), the first t vectors of

the reduced basis can be further transformed into polynomial
equations sharing the common roots over the integers. We
can applyGröbner basis computations to extract the common
roots since it is efficient for more variables. One can refer to
[26], [27] in detail.

Recently, Peng et al. [29] presented improved attacks
on the Dual RSA scheme [35] and common private expo-
nent RSA scheme. They used a lattice technique that can
discover a linear combination of some lattice reduced basis
vectors if the desired result was not directly obtained after
running lattice basis reduction algorithms. We call it the
splitting technique, which is based on the observation of
Gaussian heuristic in certain lattices. We adapt the split-
ting technique along with the linearization technique [17] to
present convenient and lucid lattice constructions. We start
from the Gaussian heuristic that is the understructure and
then introduce the splitting technique, which aims to split a
variable of large norm into several variables of smaller norm
by reducing a low-dimensional lattice.

The Gaussian heuristic says that the norm of the short-
est non-zero vector ~s of a random m-dimensional lattice L
satisfies ‖~s‖ ≈

√
m

2πe det(L)
1
m . ‖~s‖ is also written as λ1(L),

where the successive minimum λi (L) denotes the i-th min-
imum of L, which means that it is the radius of the smallest
zero-centered ball containing at least i many linearly inde-
pendent lattice vectors. One may refer to [19, Section 6.5.3]
for more details.
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A further claim on this property of random lattices can
be found in [15]. The successive minima of a random m-
dimensional lattice L are all asymptotically close to the
Gaussian heuristic with an overwhelming probability, that is
λi (L)/det(L)

1
m ≈

√
m

2πe for all 1 ≤ i ≤ m. Though the
constructed low-dimensional lattices in our attacks are not
random lattices as described in the Gaussian heuristic, the
norms of the reduced basis vectors are asymptotically close to
det(L)

1
m according to practical experiments. Furthermore,

we have |vi1 | ≈ det(L0)
1
m that is useful in our analyses†,

where ~vi (for 1 ≤ i ≤ m) is a reduced basis vector after
running the LLL algorithm on constructed m-dimensional
full-rank lattice L0.

3. Cryptanalysis for Given Two Instances

In this section, we propose our attacks for given two RSA
instances (N1, e1, d1) and (N2, e2, d2). Recall that the ana-
lytic scenario is e1 ≈ e2 ≈ N , where N denotes an inte-
ger with the same bit-size as N1, N2 and the private keys
d1 ≈ d2 ≈ Nδ share some MSBs and LSBs leaving one
different block in the middle. Specifically, we assume the
attacker learns that d2 = d1 + dLd21 with known values
δ, β, γ and dL = 2 bγ log2 N c , where unknown d21 satisfying
|d21 | ≈ Nβ denotes the difference between two unknown
middle blocks.

3.1 Using Two-Dimensional Lattices

We first perform the splitting technique to split one unknown
private key into a linear combination of two smaller unknown
variables. To do so, we construct a two-dimensional lattice
L0 that is generated by the following basis matrix

B0 =

[
a0 e1
0 N1

]

for a well-chosen integer a0.
From the key equation e1d1 ≡ 1 (mod ϕ(N1)) and

ϕ(N1) = (p1 − 1)(q1 − 1) = N1 + 1 − p1 − q1, we have
e1d1 − k1N1 = k1(1 − p1 − q1) + 1 for a positive in-
teger k1. Then we know (d1,−k1)B0 = (a0d1, k1(1 −
p1 − q1) + 1) is a vector belonging to L0. We have
k1 = (e1d1 − 1)/ϕ(N1) ≈ Nδ . To let each coordinate of
(a0d1, k1(1−p1−q1)+1) be balanced, we set a0 ≈ N

1
2 . Then

its norm is ‖(a0d1, k1(1− p1 − q1) + 1)‖ ≈ Nδ+ 1
2 . We know

the determinant of L0 is det(L0) = | det(B0) | = a0N1 ≈ N
3
2

from our construction of the basis matrix B0.
We can obtain two reduced basis vectors (s11, s12)

and (s21, s22) derived from the lattice reduction algo-
rithms. Further by applying the Gaussian heuristic, we have
‖(s11, s12)‖ = ‖(s21, s22)‖ ≈ det(L0)

1
2 ≈ N

3
4 with a high

possibility. It means that the sizes of all coordinates s11, s12,

†The splitting technique in our proposed attacks only deals with
the first column vector, namely (v11, . . . , vm1).

s21 and s22 are roughly N
3
4 . Actually, we have s11 = a0a1

and s21 = a0a2 since the reduced basis vectors are generated
by B0 as follows.

[
s11 s12
s21 s22

]
=

[
a1 −

a2 −

] [
a0 e1
0 N1

]
=

[
a0a1 ∗

a0a2 ∗

]
,

where known integers a1 and a2 are elements appearing
in the first column vector of the unimodular transformation
matrix.

On the other hand, we have a0d1 = s11c1 + s21c2
since (s11, s12) and (s21, s22) are also basis vectors of L0.
Thus, we obtain d1 = a1c1 + a2c2 for unknown c1 and c2.
Combining it with d2 = d1 + dLd21, we finally have d2 =
a1c1 + a2c2 + dLd21. Now we figure out the sizes of above
parameters. It can be easily deduced that |a1 | ≈ |a2 | ≈ N

1
4

and hence |c1 | ≈ |c2 | ≈ Nδ− 1
4 . We substitute the expression

of d2 in another key equation e2d2 = k2(N2+1−p2−q2)+1.
That is e2(a1c1 + a2c2 + dLd21) = k2(N2 + 1− p2 − q2) + 1.
Therefore, we turn to solving the following modular polyno-
mials for the implicit related-key factorization problem. The
first polynomial f1(x, y, z, w) is

x(y − N2 − 1) + e2a1z + e2dLw − 1 (mod e2a2) (2)

with roots (k2, p2 + q2, c1, d21). The second polynomial
f2(x, y, z, w) is

x(y − N2 − 1) + e2a1z + e2a2w − 1 (mod e2dL ) (3)

with roots (k2, p2 + q2, c1, c2). Notice that we need to deal
with the modular polynomials in four variables. To provide
elegant lattice constructions, we further apply the lineariza-
tion technique introduced in [17].

3.1.1 The First Attack

To solve the first polynomial (2), we let u := x y − 1 and
derive the following linear polynomial

f̄1(x, z, w, u) := u−(N2+1)x+e2a1z+e2dLw (mod e2a2).

The shift polynomials g[i, j,k,l1,l2](x, y, z, w, u) are defined as

g[i, j,k,l1,l2](x, y, z, w, u) := xi y j zl1wl2 f̄ k1 (x, z, w, u)Es−k

for E = e2a2, a positive integer s and i, j, k, l1, l2 ∈ N. We
denote the set of shift polynomials by G that can be written
as G := G1 ∪ G2, where

G1 := {g[i,0,k,l1,l2] : k = 0, . . . , s; i = 0, . . . , s − k;
l1 = 0, . . . , s − k − i; l2 = 0, . . . , s − k − i − l1.},

G2 := {g[0, j,k,l1−l2,l2−k] : l1 = 0, . . . , s; j = 1, . . . , τl1;
l2 = 0, . . . , l1; k = 0, . . . , l2.}

for an optimizing parameter 0 ≤ τ ≤ 1 to be determined
later. Thus, all the shift polynomials in G share the common
roots (k2, p2 + q2, c1, d0, k2(p2 + q2) − 1) modulo Es .

By introducing auxiliary parameters r = i+k+l1+l2 and
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Table 1 A toy example of lattice basis matrix for s = 1 and τ = 1 with E = e2a2 andC = −(N2 +1).
1 x z yz w yw u yu

g[0,0,0,0,0] (xX, yY, zZ, wW, uU ) E
g[1,0,0,0,0] (xX, yY, zZ, wW, uU ) EX
g[0,0,0,1,0] (xX, yY, zZ, wW, uU ) EZ
g[0,1,0,1,0] (xX, yY, zZ, wW, uU ) EYZ
g[0,0,0,0,1] (xX, yY, zZ, wW, uU ) EW
g[0,1,0,0,1] (xX, yY, zZ, wW, uU ) EYW
g[0,0,1,0,0] (xX, yY, zZ, wW, uU ) CX e2a1Z e2dLW U
g[0,1,1,0,0] (xX, yY, zZ, wW, uU ) C e2a1YZ e2dLYW CU YU

r ′ = i′ + k ′ + l ′1 + l ′2, the polynomial and monomial orders ≺
are defined as g[i, j,k,l1,l2] ≺ g[i′, j′,k′,l′1,l

′
2] and xi y juk zl1wl2 ≺

xi
′

y j′uk′ zl
′
1wl′2 , respectively if r < r ′; or r = r ′, i ≥ i′; or

r = r ′, i = i′, l1 ≥ l ′1; or r = r ′, i = i′, l1 = l ′1, l2 ≥ l ′2; or
r = r ′, i = i′, l1 = l ′1, l2 = l ′2, j < j ′.

We can substitute each occurrence of x y by u + 1. The
lattice basis matrix B is constructed by taking the coefficient
vectors of g[i, j,k,l1,l2](xX, yY, zZ, wW, uU) in G as row vec-
tors, where X ,Y , Z ,W andU denote the upper bounds on the
small roots. The rows and columns of B are set according to
above polynomial and monomial orders ≺. Two parameters
s and τ guarantee that B is square and triangular.

Table 1 shows a toy example of the lattice basis matrix
B for s = 1 and τ = 1, where each row can be viewed as the
coefficient vector transformation from a shift polynomial.
We are able to obtain the basis matrix B that generates the
main lattice L directly from our construction.

Since we already know X ≈ Nδ , Y ≈ N
1
2 , Z ≈ Nδ− 1

4 ,
W ≈ Nβ , U ≈ Nδ+ 1

2 and E ≈ N
5
4 , we can calculate the

determinant of L that is the product of the diagonal entries
of the basis matrix B.

det(L) = *.
,

s∏
k=0

s−k∏
i=0

s−k−i∏
l1=0

s−k−i−l1∏
l2=0

X iZ l1W l2UkEs−k+/
-

∗
*.
,

s∏
l1=0

τl1∏
j=1

l1∏
l2=0

l2∏
k=0

Y j Z l1−l2W l2−kUkEs−k+/
-

=X sxY sy ZszW swUsu EsE ,

where the exponents sx , sy , sz , sw , su and sE are the con-
tributions of the diagonal entries to the determinant. The
lattice dimension is m =

∑s
k=0

∑s−k
i=0

∑s−k−i
l1=0

∑s−k−i−l1
l2=0 1 +∑s

l1=0
∑τl1

j=1
∑l1

l2=0
∑l2

k=0 1 = 1+3τ
24 s4 + o(s4). Similarly, omit-

ting the rounding of τl1 since it is negligible for asymp-
totic analysis with sufficiently large s, we have sx =

1
120 s5 + o(s5), sy = τ2

20 s5 + o(s5), sz = sw = su =
1+4τ
120 s5 + o(s5), sE = 4+11τ

120 s5 + o(s5). From condition (1)
with R = Es for acquiring enough integer equations sharing
the common roots, we have

X sxY sy ZszW swUsu EsE < E
1+3τ

24 s5
,

where the lower terms are neglected. Moreover, let s go to
infinite and we obtain the crucial condition 1

120 · ξx +
τ2

20 ·

ξy +
1+4τ
120 · (ξz + ξw + ξu) + 4+11τ

120 · ξE < 1+3τ
24 · ξE , where

ξx , ξy , ξz , ξw , ξu and ξE denote the exponents of the upper
bounds. We reduce the crucial condition to a simplified one
that is

ξx + 6τ2ξy + (1 + 4τ)(ξz + ξw + ξu − ξE ) < 0. (4)

Since we know ξx = δ, ξy =
1
2, ξz = δ − 1

4, ξw =

β, ξu = δ + 1
2, ξE =

5
4 , we hence have δ + 3τ2 +

(1 + 4τ)
(
δ − 1

4 + β + δ +
1
2 −

5
4

)
< 0, which leads to δ <

(1−β)(1+4τ)−3τ2

3+8τ . The right side reaches its maximum by tak-

ing τ =
√

177−96β−9
24 . We put it in the inequality and hence

derive the final condition

δ <
25 − 16β −

√
177 − 96β

32
. (5)

Once (k2, p2+ q2, c1, d21, k2(p2+ q2)−1) are extracted,
we can easily factorize N2 since knowing the value of p2 +
q2. We further have d2 from the key equation d2 = e−1

2
(mod ϕ(N2)), which is used to recover d1 by d1 = d2 −
dLd21. Thus, we can factorize N1 since knowing d1 is
equivalent to knowing the factorization of N1, which has
been proven in [12].

3.1.2 The Second Attack

To solve the second polynomial (3), we let u := x y − 1 and
derive the following linear polynomial

f̄2(x, z, w, u) := u−(N2+1)x+e2a1z+e2a2w (mod e2dL ).

The shift polynomials g[i, j,k,l1,l2](x, y, z, w, u) are defined
similarly to the foregoing case,

g[i, j,k,l1,l2](x, y, z, w, u) := xi y j zl1wl2 f̄ k2 (x, z, w, u)Es−k

for E = e2dL , a positive integer s and i, j, k, l1, l2 ∈ N.
The concrete lattice construction is identical to that of

Sect. 3.1.1 along with the construction of the set G of the
shift polynomials. Therefore, we focus on the simplified
crucial condition (4). The only differences between two
attacks are the upper bounds on unknown variables as well
as their exponents based on N . We figure out them in the
second attack as follows: ξx = δ, ξy =

1
2, ξz = ξw =

δ− 1
4, ξu = δ+

1
2, ξE = 1+ γ. Thus, we have δ+ 3τ2 + (1+

4τ)
(
δ − 1

4 + δ −
1
4 + δ +

1
2 − 1 − γ

)
< 0. We then infer that

δ <
(1 + γ)(1 + 4τ) − 3τ2

4 + 12τ
.
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The right side reaches its maximum by taking τ =
√
γ+2−1

3 .
We put it in the inequality and obtain the final condition

δ <
2γ + 3 −

√
γ + 2

6
. (6)

Once we extract the common roots (k2, p2 +
q2, c1, c2, k2(p2+q2)−1), we can easily factorize N2. We fur-
ther have d2 from the key equation d2 = e−1

2 (mod ϕ(N2)).
On the other hand, we know d1 = a1c1+a2c2 from Gaussian
heuristic. Thus, we can factorize N1 since knowing d1 is
equivalent to knowing the factorization of N1.

3.2 Using Three-Dimensional Lattices

In order to avoid a discussion ofmodulus E of the constructed
polynomials like forms (2) and (3) in Sect. 3.1, we propose a
heuristic lattice construction and perform the splitting tech-
nique on a three-dimensional lattice, which is constructed by
the following basis matrix

B0 =



a0 0 e2
0 b0 e2dL

0 0 N2


for two well-chosen integers a0 and b0. Then we have a
vector in L0 that is (d1, d21,−k2)B0 = (a0d1, b0d21, e2d1 +
e2dLd21 − k2N2) = (a0d1, b0d21, e2d2 − k2N2) =

(a0d1, b0d21, k2(1 − p2 − q2) + 1). Since k2 ≈ Nδ , we set
a0 ≈ N

1
2 and b0 ≈ N

1
2+δ−β to balance its coordinate.

Then its norm is roughly Nδ+ 1
2 . We calculate the deter-

minant of L0 as det(L0) = | det(B0) | = a0b0N2 ≈ N2+δ−β

from our construction of the basis matrix B0. In this
case, we split d1 into a linear combination of three smaller
variables as d1 = a1c1 + a2c2 + a3c3 for unknown c1,
c2 and c3, where known a1, a2 and a3 come from the
first column vector of the unimodular transformation ma-
trix. We have |ai | ≈ det(L)

1
3 /a0 ≈ N

2δ−2β+1
6 and hence

|ci | ≈ Nδ−
1+2δ−2β

6 = N
4δ+2β−1

6 .
We substitute the expression of d1 in the key equation

e1d1 = k1(N1 + 1 − p1 − q1) + 1 and obtain

e1(a1c1 + a2c2 + a3c3) = k1(N1 + 1 − p1 − q1) + 1.

So we aim to solve f3(x, y, z, w) that is

x(y − N1 − 1) + e1a1z + e1a2w − 1 (mod e1a3) (7)

with roots (k1, p1 + q1, c1, c2).

3.2.1 The Third Attack

We reduce the implicit related-key factorization problem to
solving polynomial (7). Since it is a modular polynomial in
four variables, we follow the foregoing strategy and define

f̄3(x, z, w, u) := u−(N1+1)x+e1a1z+e1a2w (mod e1a3)

for u := x y − 1. The shift polynomials are defined similarly

except for E = e1a3 and we skip the detailed lattice construc-
tion here. Recall that the crucial condition (4) for acquiring
the insecure bound on δ is ξx + 6τ2ξy + (1 + 4τ)(ξz + ξw +
ξu − ξE ) < 0.

We know ξx = δ, ξy =
1
2, ξz = ξw =

4δ+2β−1
6 , ξu =

δ + 1
2, ξE = 1 + 2δ−2β+1

6 . Thus, we have δ + 3τ2 + (1 +
4τ)

( 4δ+2β−1
3 + δ + 1

2 − 1 − 2δ−2β+1
6

)
< 0, which leads to

δ <
(1−β)(1+4τ)−3τ2

3+8τ . The right side reaches its maximum

by taking τ =
√

177−96β−9
24 . We put it in the inequality and

obtain the final condition

δ <
25 − 16β −

√
177 − 96β

32
.

Once (k1, p1 + q1, c1, c2, k1(p1 + q1) − 1) are extracted,
we can factorize N1 through p1 + q1. To factorize N2, we
construct a similar basis matrix and perform the splitting
technique on d2. Interestingly, this insecure bound is identi-
cal to (5) in Sect. 3.1.1.

3.3 Illustrations and Discussions

In order to provide a concise solution to the implicit related-
key factorization problem, we employ a three-dimensional
lattice in Sect. 3.2. However the result is the same as (5) of
Sect. 3.1.1 while the latter uses a two-dimensional lattice that
is more efficient. We illustrate our main attack results from
Sect. 3.1 in Fig. 1. It is obvious that we gain an improvement
of the insecure bound on δ with the help of known implicit
information about the private keys. For example, we should
have β < 0.17 from our first result (5) if we want to factorize
two RSA moduli with δ = 0.3, which means we should
already know the implicit information that the private keys
share at least 0.3−0.17

0.3 ≈ 43.3% MSBs and LSBs. Note
that there is no restriction on how to distribute two partial
amounts of shared MSBs and LSBs.

But if we apply our second result (6) for the same attack
scenario with δ = 0.3, we should have γ > 0.13. It means
we should already know the implicit information that the
private keys share at least 0.13

0.3 ≈ 43.3% LSBs. Thus, we
observe that the first attack is preferable since the shared bits
can locate in both MSBs and LSBs, whereas the shared bits
(of the same amount) are forced to locate in LSBs in the
second attack.

Furthermore, we show that the first attack is always
better than the second one. We consider two attacks for
the same δ and discuss the boundary values of β and γ
below. We obtain the boundary value of β from (5) that is
11−16δ−

√
48δ+9

8 . On the other hand, we obtain the boundary
value of γ from (6) that is 24δ−11+

√
48δ+9

8 . We compare two
fractions of shared bits derived from above computations
that is 1 − 11−16δ−

√
48δ+9

8δ = 24δ−11+
√

48δ+9
8δ , which means

the implicit information about the amount of shared bits is
identical. Since the shared bits of the first attack can be
located in both MSBs and LSBs, it is more flexible and
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Fig. 1 The main results of the proposed attacks for given two RSA in-
stances. The solid line denotes the upper bound on δ and the dot-dash line
denotes the lower bound. The gray areas indicate the vulnerable scenarios.

suitable for more scenarios.
To summarize, we propose three distinct attacks when

given two RSA instances. The first one is the best among
them because it offers lower computation complexity and
higher flexibility. One may wonder whether our approach
can handle the implicit related-key factorization problem for
more than two RSA instances. The answer to this question
is given in Sect. 4.

4. Cryptanalysis for Given More Instances

We recall the concrete attack scenario for handling n dis-
tinct RSA instances. For n key pairs of RSA parameters
(Ni, ei, di) with 1 ≤ i ≤ n, we have ei ≈ N and di ≈ Nδ with
d j = di + dLd ji for 1 ≤ i < j ≤ n, where dL = 2 bγ log2 N c

is known and d ji satisfying |d ji | ≈ Nβ is unknown. Specif-
ically, the attacker aims to factorize the moduli for known
δ, β, γ and given public data (N1, e1, . . . , Nn, en).

We wish to perform the splitting technique to split d1
into a linear combination of several smaller unknown vari-

ables. However, the low-dimensional lattice construction
is not as straightforward as that in Sect. 3.1 when we have
more than two RSA instances. This is the reason why we
introduce a heuristic construction in Sect. 3.2, which can be
easily extended to the case for given more RSA instances.

To do so, we construct a (2n − 1)-dimensional lattice
L0 that is generated by the following basis matrix

B0 =



a0 0 · · · 0 e2 · · · en
0 b0 · · · 0 e2dL · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · b0 0 · · · endL

0 0 · · · 0 N2 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · Nn



for two well-chosen integers a0 and b0. We can compute a
lattice vector (d1, d21, . . . , dn1,−k2, . . . ,−kn)B0 in L0, that
is (a0d1, b0d21, . . . , b0dn1, k2(1 − p2 − q2) + 1, . . . , kn(1 −
pn − qn) + 1) since we have eid1 + eidLdi1 − kiNi = ei (d1 +
dLdi1)−kiNi = eidi−kiNi = ki (1−pi−qi)+1 for 2 ≤ i ≤ n
from the related-key equations d j = di + dLd ji and the RSA
key equations. We know that ki = (eidi − 1)/ϕ(Ni) ≈ Nδ

for 1 ≤ i ≤ n. To balance each coordinate of above vec-
tor, we set a0 ≈ N

1
2 and b0 ≈ N

1
2+δ−β . The norm of the

constructed vector is roughly estimated as Nδ+ 1
2 . The deter-

minant of L0 is det(L0) = | det(B0) | = a0bn−1
0

∏n
i=2 Ni ≈

N
3
2 n−1+(n−1)(δ−β) from our construction of basis matrix B0.

Applying the Gaussian heuristic, the norm of
the reduced basis vectors is roughly det(L0)

1
2n−1 ≈

N
3n−2+2(n−1)(δ−β)

2(2n−1) . Similarly, we write d1 as an integer linear
combination of (2n − 1) unknown variables for d1 = a1c1 +
a2c2+· · ·+a2n−1c2n−1, where ai’s are calculated from the first
column vector of the unimodular transformation matrix. We
have |ai | ≈ det(L0)

1
2n−1

a0
≈ N

3n−2+2(n−1)(δ−β)
2(2n−1) − 1

2 = N
(n−1)(2δ−2β+1)

2(2n−1)

and hence |ci | ≈ Nδ−
(n−1)(2δ−2β+1)

2(2n−1) = N
2nδ+2(n−1)β−n+1

2(2n−1) .
Substituting the expression of d1 in the key equation

e1d1 = k1(N1+1−p1−q1)+1, we aim to solve the following
modular polynomial in (n̂ + 2) variables,

x(y−N1−1)+e1a1z1+· · ·+e1an̂zn̂−1 (mod e1an̂+1)

with roots (k1, p1+q1, c1, . . . , cn̂) for n̂ := 2n−2. Lettingu :=
x y − 1, the polynomial f n̂(x, z1, . . . , zn̂, u) can be rewritten
as

u− (N1 + 1)x + e1a1z1 + · · ·+ e1an̂zn̂ (mod e1an̂+1).

The shift polynomials are defined as

g[i, j,k,l1,...,ln̂](x, z1, . . . , zn̂, u) := xi y j zl11 · · · z
ln̂
n̂

f kn̂ Es−k

for E = e1an̂+1, a positive integer s and i, j, k, l1, . . . , ln̂ ∈ N.
We denote the set of shift polynomials by G that is the union
of G1 and G2, where
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G1 := {g[i,0,k,l1,...,ln̂] : k = 0, . . . , s; i = 0, . . . , s − k; . . . ;
ln̂ = 0, . . . , s − k − i − l1 − · · · − ln̂−1.},

G2 := {g[0, j,k,l1−l2,l2−l3,...,ln̂−k] : l1 = 0, . . . , s; j = 1, . . . , τl1;
l2 = 0, . . . , l1; l3 = 0, . . . , l2; . . . ; k = 0, . . . , ln̂.}

for an optimizing parameter 0 ≤ τ ≤ 1 to be determined
later. Thus, all the shift polynomials in G share the common
roots (k1, p1 + q1, c1, . . . , cn̂, k1(p1 + q1) − 1) modulo Es .

The constructions of the basis matrix B and lattice L
are similar, so we skip them here. The upper bounds on
unknown variables are calculated as X ≈ Nδ, Y ≈ N

1
2 , Zi ≈

N
2nδ+2(n−1)β−n+1

2(2n−1) , U ≈ Nδ+ 1
2 , E ≈ N1+ (n−1)(2δ−2β+1)

2(2n−1) . Similarly,
we can calculate the determinant of L that is the product
of the diagonal entries of the basis matrix B as det(L) =
X sxY sy Z

sz1
1 · · · Z

szn̂
n̂

Usu EsE , where the exponents sx , sy ,
szi , su and sE are the contributions of the diagonal entries
to the determinant.

We list sx , sy , szi , su , sE and the lattice dimension m
without the lower terms after tedious computations. sx =

1
(n̂+3)! sn̂+3, sy =

(n̂+1)(n̂+2)τ2

2(n̂+3)! sn̂+3, szi =
1+(n̂+2)τ

(n̂+3)! sn̂+3, su =
1+(n̂+2)τ

(n̂+3)! sn̂+3, sE =
n̂+2+(n̂2+3n̂+1)τ

(n̂+3)! sn̂+3, m = 1+(n̂+1)τ
(n̂+2)! sn̂+2.

Using condition (1) with R = Es for acquiring enough
integer equations with the common roots, we have a simpli-
fied crucial condition 2ξx + (n̂ + 1)(n̂ + 2)τ2ξy + 2(1+ (n̂ +
2)τ)(n̂ξzi + ξu − ξE ) < 0. We have ξx = δ, ξy = 1

2, ξzi =
2nδ+2(n−1)β−n+1

2(2n−1) , ξu = δ+
1
2, ξE = 1+ (n−1)(2δ−2β+1)

2(2n−1) , which
denote the corresponding exponents of the upper bounds.

Since n̂ = 2n−2, we further have ξx + n(2n−1)τ2ξy +
(1+ 2nτ)((2n − 2)ξzi + ξu − ξE ) < 0. We substitute ξx , ξy ,
ξzi , ξu and ξE in this inequality and obtain δ + n(2n−1)

2 τ2 +

(1 + 2nτ)
(
nδ + (n − 1) β − n

2

)
< 0, which can be reduced

to

δ <
(2nτ + 1)(n − 2(n − 1) β) − n(2n − 1)τ2

2(2n2τ + n + 1)
.

The right side reaches its maximum by taking τ =
√

(2n−1)(6n3+3n2−1−8n2 (n−1)β)−(n+1)(2n−1)
2n2 (2n−1) . We put it back in

the inequality and hence obtain the final condition

δ <
1

4n3

(
2n3 + 2n2 + n − 1 − 4n2(n − 1) β

−

√
(2n − 1)(6n3 + 3n2 − 1 − 8n2(n − 1) β)

)
.

(8)

The solvable condition (8) with respect to various β’s
is illustrated in Fig. 2 and discuss more about it. We can
achieve higher insecure bound as the unknown part i.e., β
decreases. On the other hand, exposing more RSA instances
with implicitly related keys is more vulnerable. Let n go
to infinity, the asymptotic bound on δ converges to 1

2 − β.
Consequently, it means that our attacks are still effective for
δ < 1

2 , which matches a conjecture in previous small private
exponent attack [4] unless there exist other more effective
attacks.

Fig. 2 The comparison of the insecure upper bounds on δ in condition (8)
for given n RSA instances with respect to β = 0, β = 0.05, β = 0.1 and
β = 0.15.

5. Experimental Results

In Sect. 3 and Sect. 4, we proposed lattice-based attacks us-
ing the splitting technique and the linearization technique.
Now, we want to verify the validity of the proposed attacks.
The computer experiments are carried out in SageMath [40]
running on a virtual machine with Intel Xeon CPU E5-2620
v4@ 2.10GHz. Because practical attacks always have slight
worse performance comparedwith theoretical asymptotic re-
sults, we aim to obtain the average performance for conduct-
ing successful attacks. To do so, we first randomly fix the
bit-sizes of LSBs and MSBs, which imply γ and (δ − β − γ)
respectively. Then we gradually increase the bit-size of the
different middle block that relates to β in each attack set-
ting. Finally, we randomly generate specified private keys
and 1024-bit RSA moduli with corresponding public keys.
We carry out the proposed attacks for fixed δ, β and γ with
simulated public data several times to conclude the average
experimental results. Conversely, an attacker can perform
successful lattice-based attacks for given public data with
δe, β and γ listed in Table 2 in practice.

We mainly implement the proposed attacks for given
two RSA instances, which have been analyzed in Sect. 3.
During the experiments, we can collect much more polyno-
mial equations satisfying our requirements. In other words,
after running the LLL algorithm, we obtain enough suffi-
ciently short reduced vectors, which are later transformed
into a system of integer equations. Hence, we can ex-
tract their common roots by the Gröbner basis computa-
tions and finally derive the factorization of given RSA mod-
uli. We choose a suitable s with an optimal τ for concrete
attack settings, which implies we shall first reduce a two-
dimensional (or three-dimensional) lattice and then another
m-dimensional one. The comparison of the asymptotic and
experimental results are given in Table 2.

To be specific, the γ, β columns indicate the known
information of the implicitly related keys. The δ∞ column
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Table 2 The asymptotic bounds and experimental results of the proposed attacks for given two RSA instances.
Attack Type γ β δ∞ LSBs MSBs KBs δe s τ m

First Attack 0.117 0.038 0.350 120 160 319 0.312 6 0.167 225
First Attack 0.078 0.092 0.330 80 128 303 0.296 5 0.200 136
First Attack 0.023 0.195 0.290 24 56 280 0.274 7 0.143 351

Second Attack 0.156 0.061 0.307 160 65 288 0.282 5 0.200 136
Second Attack 0.131 0.101 0.300 135 45 284 0.278 6 0.167 225
Second Attack 0.117 0.093 0.296 120 62 278 0.272 6 0.167 225
Third Attack 0.178 0.070 0.338 183 54 309 0.302 5 0.200 136
Third Attack 0.156 0.053 0.345 160 96 311 0.304 6 0.167 225
Third Attack 0.117 0.039 0.350 120 143 303 0.296 6 0.167 225

provides the asymptotic bounds when the lattice dimension
goes to infinity. The LSBs and MSBs columns (recorded in
bits) provide the numbers of shared bits in implicitly related
keys for simulating three proposed distinct attacks. The KBs
column (recorded in bits) provides the numbers of the private
key bits when successfully conducting the proposed attacks.
The δe column provides the experimental results for our
lattice settings, which are denoted by the s, τ, m columns.

We briefly comment on the root extraction process that
completes the proposed attacks. We are able to collect suf-
ficient equations sharing the common roots over the inte-
gers after transforming the reduced vectors into polynomi-
als. Then we put them into the Gröbner basis computations
and obtain p2 + q2 that leads to the factorization of N2. As
mentioned in Sect. 3.1, we can obtain the factorization of N1
as well. In another case, we first calculate the correct value
of w if the Gröbner basis computations do not give explicit
solutions. Thus, we can recover the values of other variables
including p2 + q2 and finally factorize N1 and N2.

6. Conclusions

In this paper, we propose the formulation of a new factor-
ization problem of RSA with respect to implicitly related
keys, whose goal is to factorize RSA moduli with the help of
implicit hints about related private keys. We propose several
lattice-based attacks using Coppersmith’s techniques that is
applied for solving modular polynomials as a powerful tool.
We adapt the splitting technique to split a variable of large
norm into some variables of smaller norm. This technique is
further used to represent one private key with known implicit
relation about other private keys.

We analyze the implicit related-key factorization prob-
lem for given two RSA instances in detail. Three distinct
attacks are presented and the theoretical results are illus-
trated and discussed. The validity of the proposed attacks
are further verified by numerical computer experiments. We
extend a heuristic lattice construction to the attack scenario
for given more than two RSA instances. A heuristic attack is
proposed and we illustrate the theoretical results according
to various implicit hints of the related keys. In conclusion,
more RSA instances with implicitly related keys generated
by more shared bits make the RSA cryptosystem much more
vulnerable.
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