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cryptosystem was proposed using a novel product that arises from a cubic field connected
to the cubic Pell equation. The relevant key equation is ed =1 mod (p2 + p + 1)(q* +q+1)
with N = pq. This RSA variant is claimed to be robust against the Wiener's attack and
hence the bit-size of the private key could be shorter, namely d < N'/4. In this paper, we

Keywords: explore the further security analysis and investigate the potential small private exponent
Cryptanalysis attack. We show that such RSA variant is particularly vulnerable to the lattice-based
RSA variant method. To be specific, we can carry out the lattice-based small private exponent attack if
Cubic Pell equation d < N2~V2, which is less secure than the standard RSA. Furthermore, we conduct numerical

Lattice-based method

Small private exponent attack experiments to verify the validity of the proposed attack.
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1. Introduction

RSA [1] is currently the most widely used public key cryptosystem in the world. In the standard RSA cryptosystem, a
public modulus N is the product of two large primes p and g of the same bit-size, namely N = pq. The key equation is
ed =1 mod ¢(N), where ¢(N) = (p — 1)(q — 1) is Euler’s totient function. (N,e) and (p,q,d) are called the public and
private keys, respectively. In the encryption process, a message string is transformed into an integer m and then encrypted
as ¢ =m® mod N. The decryption process computes ¢ mod N. As e and d are calculated as exponents in the encryption
and decryption phases, they are called public and private exponents as well. In this paper, we assume e = N%, d = N® and
further use two parameters o and § in the cryptanalysis for simplicity.

The standard RSA scheme has been generalized by various approaches such as modifying the modulus [2] and modifying
the decryption process [3] to gain a significant speed-up in the practical implementation. Besides, several RSA variants like
[4,5] have been proposed to be more secure against the broadcast attack [6]. In this paper, we focus on the RSA variant
based on cubic Pell equation that was proposed in [5]. It defines a novel product that is applied in the encryption and
decryption processes. We conclude the modified key equation arisen from such RSA variant, which can be written as

ed=1mod (p> +p+1)(@*+q+1). (1)
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Generally, we have 0 <«,8 <2 as 0 <e,d < (p2 + p + 1)(q%> + q + 1) =~ N2. Moreover, « and § can be set to exceed the
above range for particular security considerations in practice. We introduce the relevant RSA variant and its mathematical
background below. One may refer to [5] for more details.

This RSA variant was recently proposed by Murru and Saettone. It is related to an interesting definition of product that
arises from a cubic field connected to the cubic Pell equation. Let IF be a field and (¢3> —r) be an irreducible polynomial in
F[t]. We consider the quotient field

A=F[t)/(t3 =)= {x+yt+zt>:x, y,z F}.

A induces a product e between two triples like (x1, y1,21), (X2, ¥2,22) € F3. The product (x1, y1,21) e (x2, ¥2, 22) is calcu-
lated as

(X1X2 + (Y221 + Y122)1, X2¥1 +X1Y2 + 12122, Y1Y2 + X221 + X122).

The norm of an element (x,y,z) is given by N(x,y,z) = x> + ry3 + 223 — 3rxyz. Considering the unitary elements, we
obtain the cubic Pell curve

C={(xy,2)eF3: 3 +ry> +1°2> = 3rxyz =1},

where x3 +ry3 + 1223 — 3rxyz =1 is the more natural cubic Pell equation for a non-cubic integer r. Starting from A, we
consider the quotient group B = A*/IF* with a non-standard product ©. The group B can be rewritten as

B={m+nt+t’]:mneF}U{m+t]:meF}U{[1F-1},

where [-] stands for the equivalent set. Fixing an element 6 ¢ IF', the elements of B can be seen as (m,n) with m,n eIF, or
(m,0) with m e, or (6, 0). Now the group B is

B=(F xF)U(F x {0}) U ({8} x {6)).

The rules for computing the commutative product © in B are defined as follows, where (6, 0) is the identity.

o (m,0) 0 (k,0) = (mk,m+k);
o (m,n) O (k,0) =

mk+r  m+nk .
- (s, W) n+k#0;

- <m"” 9>,n+k=0, m—n?+£0;

m-n2’
- (0, 0), otherwise;
o (m,n)o (k,1)=

mk+@n+Dr  nk4+mi+r .
- (D S ), m k4l £ O

nk-+ml+r °
- (0, 0), otherwise.

- (w 9),m+k+nl=0, nk+ml+r£0;

The RSA variant scheme is based on the following useful facts. Letting IF = Z, and fixing § = oo, we have A = GF(p?)

in this case. Thus, B is a cyclic group of order ’f%f = p2 4+ p + 1, with respect to a well-defined product ©. An analog of
the little Fermat’s theorem holds.

(m, m)®P*+P+1 = (00, 00) mod p,

for any m € Z, and n € Zp U {oo}. Moreover, the power using the product ® can be evaluated through a generalization of
the Rédei rational functions. When N = pq, for two prime numbers p and g of the same bit-size, it follows from the above
power computation that

(m, )@P*+PHD@ 4D — (56 60) mod N,

which can be seen as an analog of the Euler’s theorem. The proposed public-key cryptosystem in [5] using the product ©
is described as follows.

Key Generation. Randomly choose two prime numbers of the same bit-size p,q and compute the modulus N = pq. Ran-
domly choose an integer e such that ged(e, (p?> +p+1)(g> +q+1)) = 1 along with a non-cubic integer r in Zp, Zq
and Zy. Compute d such that ed =1 mod (p? + p 4+ 1)(q? + g + 1). The public encryption key is (N,e,r) and the
corresponding secret decryption key is (p, q, d).
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Encryption. Given a pair of plaintexts m; and m; in Zy, they are encrypted by

(c1,¢2) = (mq,m2)® mod N.

Decryption. Given a pair of ciphertexts ¢; and c; in Zy, the receiver can decrypt them by evaluating
(c1,¢2)° mod N.

In summary, this RSA variant scheme uses a new group equipped with a non-standard product whose powers can be
evaluated means of some generalized Rédei functions. The authors claim that the proposed scheme is more secure than
the standard RSA in broadcast scenarios since the corresponding trapdoor function is not a simple monomial power as in
the standard RSA. Furthermore, the authors claim that Wiener’s attack [7] is not usable against the proposed RSA variant
scheme. For the same reason, further attacks exploiting continued fractions also fail in such case. Hence, the private key of
bit-size less than N'/4 can be used without being affected by Wiener’s attack.

It is interesting to investigate whether the proposed scheme in [5] can be used with a much shorter private exponent in
theory and in practice as claimed. Surprisingly, we conclude that the RSA variant based on cubic Pell equation is particularly
vulnerable to the lattice-based small private exponent attack.

We first review several small private exponent attacks below. In 1990, Wiener [7] showed that one can break the stan-
dard RSA scheme when the private key d is less than $N/4. This bound was further improved to 11/1—1_8N1/4 in [8]. Wiener’s

attack utilizes the continued fraction approach to deal with the key equation ed = k(p — 1)(q — 1) + 1. If d is small enough,
k/d will be one of the convergents of the continued fraction expansion of the public rational fraction e/N. Thus, k and d
can be recovered by computing the continued fraction expansion of e/N.

Later in 1999, Boneh and Durfee [9] introduced the small inverse problem and further improved the insecure bound to
d < N1-v2/2 using Coppersmith’s lattice-based techniques [10]. The aim of the lattice-based method is to find the small
roots of the modular equation x(y + A) + 1 =0 mod e with known A and e. Moreover, Herrmann and May [11] presented
an elementary method to solve the same equation using the linearization technique that is applied to construct smaller
dimensional lattices. Though it does not improve the insecure bound, it simplifies the lattice construction and reduces the
practical consumption. More small private exponent attacks [12-18] and other types of cryptanalyses [19-23] on RSA and
its variants have been proposed using the lattice-based method.

The small inverse problem is a natural extension of the small private exponent attack on the standard RSA and has been
studied in [9,24-26]. In 2012, Kunihiro [25] presented a lattice-based method to solve small inverse problems with a higher
degree. To be specific, for a monic polynomial h(y) of degree k > 1, integers C and e, a lattice-based algorithm was proposed
to find all small roots of a bivariate modular equation xh(y)+C =0 mod e. A similar approach as the linearization technique
is employed for especially evaluating the lattice determinant. We adapt the lattice-based method in [25] to conduct the
small private exponent attack on the RSA variant based on cubic Pell equation.

In this paper, we first derive the critical modular equation to be solved from the modified key equation (1). It can be
rewritten as

ed:k((p+q)2+(N+1)(p+q)+N2 —N+1) 1.
Thus, we are required to solve a small inverse problem with degree two. The critical modular equation is

x(y2+ay+b)+150mode (2)

for a:=N+1 and b:= N? — N + 1 with small roots x :=k and y := p + q. We propose the small private exponent attack
for a general case when using full-size public key e ~ N2, which is stated below.

Proposition 1. Let N = pq be a modulus of the RSA variant based on cubic Pell equation. Two prime factors p and q are of the same
bit-size. Let e ~ N2 be a valid public key and d = N° be its corresponding private key such thated =1 mod (p? + p + 1)(q*> +q + 1).
Then N can be efficiently factored in polynomial time if

§<2—+/2.

It is oblivious that the RSA variant based on cubic Pell equation can be broken in polynomial time for small private key
d < N2—V2, Moreover, it indicates that such RSA variant is even more vulnerable than the standard RSA since 2 — /2 ~ 0.585
is much greater than 1 — +/2/2 ~ 0.292 reported in [9]. Concretely, 2 — +/2 is twice of 1 — v/2/2.

The rest of the paper is organized as follows. We review some mathematical facts and useful lemmas of the lattice-
based method in Section 2. In Section 3, we present the small private exponent attack on the RSA variant based on cubic
Pell equation in detail. In Section 4, we verify the validity of the proposed attack by computer experiments. Finally, we
conclude the paper in Section 5.
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2. Preliminaries

In this section, we introduce Coppersmith’s techniques [10,27] based on the LLL lattice reduction algorithm [28] and
summarize a crucial condition for finding the small roots of modular/integer polynomial equations. We briefly explain how
to solve multivariate modular polynomial equations using the idea of Coppersmith’s techniques. One may refer to [29-31]
for more details.

Problem 1. Let f(x1,...,x;) be an irreducible multivariate polynomial defined over Z, which has a small root (x},...,x;,)
modulo a known positive integer such that [xj| < Xi, ..., |x;| < X,. The question is to recover the desired root (x},...,x;)
in polynomial time under the established upper bounds X1, ..., X;.

We start with the lattice theory and the lattice reduction algorithm. A lattice £ spanned by linearly independent vectors
b1i,...,bw € R" is the set of their integer linear combinations, which is denoted by

w
,C(B1,...,BW): {ZZ,‘Bi 1Zi EZ}.

i=1

By regarding each Bi as a row/column vector, they generate a lattice basis matrix B. The determinant of £ is defined as
det(£) = /det(BBT), where BT is a transpose of B. The rank of £ is w and we always consider a full-rank lattice for w = n.
We have det(L) = |det(B)| for a full-rank lattice since B is a square matrix. Moreover, the determinant of a triangular basis
matrix can be easily estimated as the product of its diagonal entries.

The LLL algorithm proposed by Lenstra, Lenstra and Lovasz [28] is practically used for computing approximately short
reduced vectors due to its efficient running outputs. We provide the following substratal lemma that has been proven in
[29].

Lemma 1. Let £ be a lattice spanned by basis vectors (51, e I;W). The LLL algorithm outputs a reduced basis (V1, ..., V) satisfying

R R N w(w—1) 1 .
vill, lvall, ..., lvill < 23w+T=0 det(L) w+1=i for 1 <i<w

in time polynomial in w and in the bit-size of the entries of the basis matrix.

Howgrave-Graham [32] later refined on Coppersmith’s techniques to propose a succinct lemma, which is used for judging

if the roots of a modular equation are roots over Z. For a given polynomial h(x1,...,X;) =Y a;, ... ,-nx"l] ~~-x£{', its norm is
defined as ||h(x1,..., x|l := /2 |Gi,. i, |%
Lemma 2. Let h(x1,...,X,) € Z[X1, . .., Xn] be an integer polynomial, which is a sum of at most w monomials. Let X1, ..., X, and R

be some positive integers. Suppose that

1. h(x},...,x;) =0mod R, where |x]| < X1,..., X, < Xn,
2. [hx1 X1, ..., %aXn) || < R/v/W.

Then h(x], ..., x;) = 0 holds over the integers.

Hence, the root-finding problem in modular polynomial equations can be reduced to the case of that in equation over
the integers by using Lemma 2. Further combining with Lemma 1, one can solve a given modular equation under a certain
condition. The main idea of the lattice-based method is to construct a set of shift polynomials modulo R with the common
root and then reduce them to several integer equations. The basis matrix generating by the shift polynomials’ coefficient
vectors spans a w-dimensional lattice. One can use the LLL algorithm to obtain short lattice vectors and transform them
into polynomial equations. If the norms of the polynomials are sufficiently small, the equations hold over the integers.

When one obtains the first £ reduced vectors through the LLL algorithm, he/she can extract the solutions if

1

w(w=1)
230 det(L) wF—t < R//w,

which can be roughly reduced to det(£) < R" when ignoring the lower terms. Eventually, one can efficiently extract the
common root of the derived integer equations by the Grébner basis computation [33] or resultant computation.
In summary, we have four steps to solve a multivariate modular polynomial equation using the lattice-based method.

Shift Polynomials. Using f(x{,...,x;) and given modulus to generate a collection F of shift polynomials g1(x1, ..., Xn),
.., &w(X1, ..., X) such that (x{,...,x;) is a common root modulo R.
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Lattice Generation. Let 5,- be a row vector derived from the coefficient vector of g;(x1X1,...,x,Xp) for all 1 <i < w. Hence,
one can generate the lattice £ = {Z}’L] zibi:zj € Z}.

Lattice Reducion. Applying the LLL reduction algorithm on L, one can get the first n many reduced basis vectors
V1,...,Vn. One can transform the vectors to polynomials hq(x1,...,%s), ..., hn(X1, ..., xp) sharing the common
root (Xy,...,xp) over Z.

Root Extraction. If derived integer polynomials h;(x1,...,x,) for 1 <i <n are algebraically independent, the equation sys-
tem h;(xq,...,X;) =0 can be solved using the Grobner basis computation. Hence, one extracts the desired root

(X5, xp).

We do not mention how to solve integer polynomial equations since it makes use of the essential idea of solving modular
equations by adding an auxiliary parameter. We further apply the lattice technique introduced in [25], which can make it
easier to construct a triangular lattice matrix in our attack scenario.

Notice that solving multivariate equations is heuristic because the newly derived polynomials are not guaranteed to
be algebraically independent. In this paper, we assume that the polynomials derived from the reduced vectors of the LLL
algorithm are algebraically independent as discussed in the literature of the lattice-based attacks on RSA and its variants. In
fact, there are barely existing works that contradict this assumption.

Assumption 1. The integer polynomials finally obtained from the lattice-based method are algebraically independent. Thus,
the common root of the derived polynomial equations can be efficiently recovered by the Groébner basis computation.

3. Small private exponent attack

We aim to produce the lattice-based attack on the RSA variant based on cubic Pell equation for sufficient small pri-
vate key d, i.e. small private exponent 8. Applying the subtle technique introduced in [25], we solve the crucial modular
equation (2) and present the small private exponent attack.

We address how to find all small roots of the bivariate modular equation

f&x, y):=x(y*+ay+b)+1=0mod e.

Let h(y) :=y2 +ay+b=y?+h(y) for h(y):=ay +b with a=N+1 and b = N2 — N + 1. We transform the original
polynomial f(x,y) into

Fy) =xh(y) +1=x(y* +h(y) + 1= (xy* + 1) + xh(y).
Letting z := xy% + 1, we have f(x,y, z) := z + xh(y). The shift polynomials gi,j k1%, ¥, z) are defined as

i il y,2) =Xy fRx, y, 296K =Xy (z + xh(y))kes*

for a fixed positive integer s and non-negative integers i, j, k. We denote the set of shift polynomials by F :=G UH for

G={gi,jux y,2):( J,k €Ig},
Hi=A{ghju* y,2): (U, Jj, k) €Iy},
where the corresponding index set 7 :=Zg UZy is defined by

Tg:={G,j.k):i=0,....5j=0,1:k=0,...,5s— i},
T ={G, j,k):i=0; j=2,..., k] + 1;k=0,....s},

for a parameter 0 <t <1 to be optimized later. The definitions of Zg and Z; are modified from the original ones in [25].
Let (x, y) = (xo, yo) be a solution of f(x,y)=0 mod e and zg := xoy?J + 1, it is easy to see that all the shift polynomials
&gi.jki(x, ¥, 2) in F share the common small root (xop, yo, Zo) modulo e°.
The polynomial order <y, is defined as gj; j i <p &7, j7 k7 if

e i+k<i +k;or
ei+k=i+k andi<i; or
ei=i k=K and j<j.

. . P T VAN
The monomial order <y, is defined as x' y/z* <, x'' y/' 2% if

e it+k<i +k;or
ei+k=i+k andi<i; or
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Table 1
A toy example of the lattice basis matrix for s=2 and 7 = 1.

1 y X Xy z yz vz X Xty xz xXyz z

80,0,0] e
£(0,1,0] e’y

£(1,0,0] e’X

£[1.1.0] e2XY

£00,0,1] - - eZ

£0,1,1) - - - eYZ

£10,2,1] - - - - eY?z

£(2.0,0] e2X?

8(2,1,0] e’ X%y

£(1,0,1) - - eXZ

g1.1.1] - - - eXYZ

810,0,2] - - - _ _ 72

8(0,1,2] - - - - - - - yZz?

£(0,2,2] - - - - - - - - - y2z2

£(0.3.2] - - - - - - - - - - y3z2

=i, k=k and j < j.

We can substitute each occurrence of xy? by the term z — 1. The lattice basis matrix is generated by taking the coef-
ficient vectors of gj; jx(xX, yY,zZ) as row vectors, where X,Y and Z denote the upper bounds on the root (xo, yo, Zo).
Additionally, the rows and columns are arranged according to the above orders <p and <p,, which guarantees that the
lattice basis matrix is triangular (this property has been proven in [25]). Table 1 shows a toy example for two parameters
s=2 and T =1, where symbols “~” denote the non-zero off-diagonal entries and other off-diagonal entries are 0.

Since e = N%, d = N% and /N/2 < p,q < +~/2N, we can figure out X = N¥t5=2 y &~ N1/2 and Z ~ XY2 = N®+5=1 when
omitting small terms compared to N. We are able to compute the lattice determmant, which can be calculated as

det(L) = ]_[ Xiydzkes—k — ]_[ Xiylzkes—k ]_[ Xlydzkes—k

(i,j,k)eZ (i,j.kelg (i,j.k)ely
s s—i s Ltk]+1
i=0 k=0 j=0 k=0 j=2

By counting the numbers of X, Y, Z and e appearing in the diagonal entries, we know the contributions of the shift
polynomials to det(£). We omit the rounding of tk as |tk] is negligible in the asymptotic analysis for sufficiently large s.

We compute the dimension w of the full-rank lattice £ and the contributions of the shift polynomials denoted by ny,
ny, nz and ne, respectively.

s s Ltk]+1
T SREID ST RT3 3 RES 30 38
,j,k)eT (i,j.kelg (i,j.k)eTy i=0 k=0 j=0 k=0 j=2
SNG4 256+ =222 o),
s s—i 1
nx= Y i= Y i+ Y i=) >"3i
(,j,k)eZ (i,j.kelg (i, j.k)ely i=0 k=0 j=0
~—s(s+1)(s+2) s 3406d,
s s Ltk]+1
0= D i+ X J—ZZZJ+Z >
,j,k)eT (i,j.k)eZg (i,j.k)eTy i=0 k=0 j=0 k=0 j=2
1 72 2

37
S+ DE+2) + —s(s FDEs+1) + —s(s+ 1) = TG S +o(s),
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s s—i 1 s |Ltk]+1
nz= Y k= > k+ > k=D IDk+> Y k
(.j.keT (i,j.k)eZg (i,j.k)eTy i=0 k=0 j=0 k=0 j=2
1 T 1+7
N ISEHDE+) + Es+HDEs+ ) = s> +o(s?),
s s—i 1 s [tk]+1
Ne = Z (s—k) = Z (s—k)+ Z (s—k):ZZZ(s—kH—Z Z (s —k)
(.j.keT (i,j.k)eZg (i,j.k)eTy i=0 k=0 j=0 k=0 j=2
2 T 447 4 3
%§5(5+1)(5+2)+Es(s—1)(s+l): s 4o(s7).

Hence, we have det(L£) = X"XY™ Z"ze" for the above values. Substituting the values of X, Y, Z and e, the lattice determi-
nant det(£) is approximately equal to

N(oz+6—2)(%s3+o(s3))N%(%53+0(s3))N(a+8—l)(‘#s3+o(s3))Noz(‘”T’53+o(s3))
which can be simplified into
det(L) = N @45+ 5+ B @1+ HT a)s?

when omitting the lower order term o(s>). Consider the condition det(£) < RY for R = e, we substitute the values of e
and deduce

3

RW — eWS — NZ%QS
Hence, we deal with the exponents in det(£) < R" and obtain

Aa+8—2)+ T2 +41+T)(@+8—1)+2(4 + Do <62+ 7).

It can be simplified into

24+ (48— DT +40+85—12 <0.

The value of the left side reaches its minimum by setting T =2 — 2§ and then the inequality becomes

2 —45—a+4>0.

Hence, we obtain the final condition

§<2—4a.

Note that we must have 0 <7 =2 —2§ <1 and hence 1/2 <§ < 1. Combining it with « +8 >2 and § < 2 — /&, we have
1 <o < 9/4. We discuss more about how to solve the modular equation (2) for other cases like 0 <« <1 and o > 9/4. The
optimizing parameter t is no longer T =2 — 2§ when considering other values of «.

For 0 < o < 1, we can infer that § > 1 and hence t should be less than 0. In this case, we take T =0 and obtain
8 < (3 — @)/2. Combining it with o + 8 > 2, we have 2 — o <§ < (3 — «)/2 leading to o > 1, which contradicts the
prerequisite 0 < o < 1. Therefore, we cannot solve the modular equation (2) for 0 <« < 1.

For o > 9/4, we can infer that § < 1/2 and hence t should be greater than 1. In this case, we take T =1 and obtain
8 <5/4 — «a/3. Combining it with o +68 > 2, we have 2 — o <§ < 5/4 — «a/3 leading to o > 9/8, which satisfies the
prerequisite & > 9/4. Besides, we should ensure 0 < § < 5/4 — «/3, which can be reduced to o < 15/4. Therefore, we can
solve the modular equation (2) for 9/4 <« < 15/4 using t = 1.

Once we extract the common root (xg, yo) = (k, p +q), we can easily factorize N using the value of p + q. The above
results of our attacks are illustrated in Fig. 1. It is oblivious that we gain a significant finding of the insecure bound on §
through the lattice-based method. The RSA variant based on cubic Pell equation is not so secure as claimed.

To summarize, we propose the small private exponent attack on the RSA variant based on cubic Pell equation for the
public key e of an arbitrary bit-size (i.e. an arbitrary value of o) as follows.

Proposition 2. Let N = pq be a modulus of the RSA variant based on cubic Pell equation. Two prime factors p and q are of the same
bit-size. Let e = N be a valid public key and d = N be its corresponding private key such thated =1 mod (p? + p + 1)(q*> +q + 1).

Then N can be efficiently factored in polynomial time if

9 5 «o
8<2—«/&f0r1§a<£—r or <= —= for = <o < —.
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1.0

— 2—Vafori<a<9/4

08 --- 5/4—a/3for9/a<a<15/4|]

0.6

0.4

0.2

0']9.00 1.25

1.50 1.75 2.00 2.25 250 275 3.00 3.25 3.50 3.75
«

Fig. 1. The curves denote the asymptotic insecure bound on § with respect to various «’s. The gray region indicates the vulnerable attack scenarios of the
proposed small private exponent attack on the RSA variant based on cubic Pell equation.

Table 2

The experimental results on the proposed small private key attack.
log, N ology N 8¢ logy N Se s T w Tiie Tcp
1024 2044 439 0.428 3 1 26 0.419 0.100
1024 2047 467 0.456 4 1 40 6.807 0.137
1024 2048 485 0.473 5 1 57 126.737 0.115
1024 2047 496 0.484 6 1 77 3430.796 0.162
1024 2045 504 0.492 7 0.857 93 6149.896 0.146
1024 2045 514 0.501 8 1 126 23610.149 0.093
1024 2047 524 0.511 9 1 155 78149.222 10.715

For the general case when e ~ (p2 + p + 1)(q% + q + 1) &~ N2, we obtain the solvable condition § <2 — +/2 as stated in
Proposition 1 directly from Proposition 2. Note this insecure bound is much higher than that derived in the small private
exponent attack on the standard RSA. Thus, the RSA variant based on cubic Pell equation is much more vulnerable to attacks
using the lattice-based method.

4. Experimental results

In this section, we verify the validity of the proposed small private exponent attack on the RSA variant based on cubic
Pell equation. The experiments are carried out in SageMath'! under Windows 10 running on a laptop with Intel Core i7-
8550U CPU 1.80 GHz. The numbers for generating the concrete parameters of RSA variant instances are chosen at random.

For each numerical experiment, we first generate a 1024-bit RSA modulus N (i.e. log, N = 1024) with the private key
d of predetermined bit-size. Then we generate the corresponding public key e according to the modified key equation
ed =1 mod (p? 4+ p + 1)(g> + g + 1). Moreover, we gradually increase the bit-size of the public key e to achieve greater o
when performing the small private exponent attack.

For conducting the proposed attack, we choose a suitable s with an optimal T to construct the lattice. The experimental
results are given in Table 2. The «log, N-column provides the bit-size of the public key of the generated RSA variant
instance. The & log, N-column provides the bit-size of the private key used in the experiments for our lattice settings, which
are indicated by the s, T and w-columns. The 8.-column provides the experimental results of the insecure small private
exponent in our attacks. The respective time consumption (recorded in seconds) of the LLL algorithm and the Grébner basis
computation are given in the Ty;; and Tgg-columns.

During each experiment, we could collect abundant polynomials satisfying the solvable requirements. In other words,
we could obtain sufficient reduced basis vectors after running the lattice reduction algorithm. The running time of the LLL
algorithm heavily depends on the lattice dimension and the entries of the lattice basis matrix. As showed in Table 2, the
running time gets longer as the above parameters get larger. The polynomial equations sharing the common root over the
integers are derived from the vector-to-polynomial transformation of the outputted lattice basis vectors.

We concisely comment on the root-extraction procedure of the proposed attack. We put the derived polynomials into
the Grobner basis computation and obtain p + q that leads to the factorization of N. We successfully recover the common
root in all the experiments, where we generate the RSA variant instances using the parameters showed in Table 2. The time
consumption of the Grobner basis computation is much lower than that for running the LLL algorithm. Unfortunately, the
experimental results are still a few bits away from the asymptotic insecure bound due to the restricted computing resource.

1 We use the Sage Mathematics Software System (Version 8.0) that is available at https://www.sagemath.org.
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If we apply the lattice-based method with much higher-dimensional lattices, the practical attack results can be further
improved.

5. Conclusions

We propose an effective lattice-based attack on the RSA variant based on cubic Pell equation using Coppersmith’s tech-
niques in this paper. Though such RSA variant is designed using complicated product and power computations, the key
equation ed = 1 mod (p%> + p+ 1)(g*> +q+ 1) is quite simple. We focus on how to solve the bivariate modular equation
x(y?>+ay +b)+1=0mod e and present the small private exponent attack on this RSA variant. Further attack results for
the public key e of arbitrary bit-size are also presented and illustrated. We justify the validity of the proposed small private
exponent attack by numerical computer experiments.
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