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Abstract. This paper investigates the Mersenne number-based AJPS
cryptosystem, with a particular focus on its associated hard problem.
Specifically, we aim to enhance the existing lattice-based attack on the
Mersenne low Hamming ratio search problem. Unlike the previous app-
roach of directly employing lattice reduction algorithm, we apply the
lattice-based method to solving polynomial equations derived from the
above problem. We extend the search range for vulnerabilities in weak
keys and increase the success probability of key recovery attack. To vali-
date the efficacy and accuracy of our proposed improvements, we conduct
numerical computer experiments. These experiments serve as a concrete
validation of the practicality and effectiveness of our improved attack.

Keywords: Attack - Mersenne number - Weak key - Low Hamming
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1 Introduction

Background. At Crypto 2018, Aggarwal et al. [2] introduced the AJPS cryp-
tosystem, an innovative variant of the NTRU public-key cryptosystem [16]. In
their novel approach, integers characterized by sparse binary representation are
employed as secret keys, diverging from the conventional use of polynomials
with small coefficients. Notably, the AJPS cryptosystem is conjectured to pos-
sess inherent resilience against potential quantum threats.

The fundamental architecture of the AJPS cryptosystem unfolds as follows.
Consider a Mersenne number designated as p = 2" — 1, where n is a prime. The
algebraic structure denoted as Z/pZ can be elegantly mapped onto a set of n-bit
strings, with 1™ aligning with 0". Leveraging the arithmetic operations conducted
modulo p, a profound connection emerges between integers modulo p and binary
strings of length n. The key generation process involves the random selection
of elements f and g from Z/pZ, with each element having a predetermined
Hamming weight w a2 /n. It is necessary that g possess a multiplicative inverse
within Z/pZ. The ensuing public key h is defined as f/g, rendering an n-bit
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string characterized by an arbitrary Hamming weight. Meanwhile, the private
key corresponds to f and g.

The AJPS cryptosystem is divided into a basic bit-by-bit encryption scheme
and a key encapsulation mechanism scheme. Expanding upon the former, con-
sider a Mersenne prime p = 2" — 1, and introduce two random integers f and
g, both residing within Z/pZ. Moreover, these integers f and g each possess a
Hamming weight of w with a constraint guided by the relationship n > 4w?.
The public key pk is expressed as h = f/g (mod p), while the private key sk is
established as g. The encryption procedure involves the utilization of two ran-
dom integers a and b with a Hamming weight of w. Encrypting one bit m is
accomplished through

c=(-1)"-(a-h+D).

Upon decryption, the computation of d = Ham(c - g) is conducted, leading
to the output of ‘0’ if d < 2w?, and ‘1’ otherwise. This decryption procedure
leverages the property that c¢- g exhibits distinct Hamming weights based on the
value of m. The core relation is

cog=E)"-(a-h-g+b-g)=(-1)"-(a-f+b-g),

thus resulting in a Hamming weight of at most 2w? if m = 0.

Transitioning to the key encapsulation mechanism scheme, the instantiation
involving error correcting codes is required. In this scheme, n and w should
satisfy the constraint n > 10w?. By introducing a random integer r modulo p, the
establishment of public and private keys is denoted by pk := (r,t) = (r, f -7+ g)
and sk := f. For encrypting a message m € {0,1}", the first step involves the
generation of random integers a, by, by modulo p, all featuring a Hamming
weight of w. Subsequently, employing the encoding algorithm & : {0,1}* —
{0,1}™ associated with an error correcting code (€, D), the ciphertext (c1, ¢2) is
produced as

(c1,¢2) = (a7 + b1, (a-t+by) ®E(M)).

The decryption process is executed through the calculation of
D((f-c1)®c2) =D((f - 1) B (a-t+b2) & E(m)),

where D represents the corresponding decoding algorithm. This decryption lever-
ages the property that f-c; and a-t+bs exhibit a low Hamming distance, thereby
facilitating the recovery of m with a high probability. The core relation is

fra=far+f-b=a(t—g)+f-b=(at+b)—a g—ba+bi-f,

indicating the low Hamming weight difference between f -c¢; and a -t + ba.
While AJPS related ideas have been employed in cryptographic framework
or algorithms such as [7,13,23], a more comprehensive investigation into its
security remains imperative. After the initial proposal by Aggarwal et al. [1],
the focus shifted to the vulnerability of the AJPS cryptosystem, as addressed by
Beunardeau et al. [4]. They introduced a lattice-based attack that could work
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in time complexity of O(22¥). Expanding upon this lattice-based approach, a
subsequent study [6] not only delved into the details of lattice-based attack but
also proposed an alternative meet-in-the-middle strategy using locality-sensitive
hash functions. Their work demonstrated that the lattice-based attack surpasses
the efficiency of the meet-in-the-middle one.

The security analysis of the AJPS cryptosystem rests on the foundation of two
challenging problems. The first, referred to as the Mersenne low Hamming ratio
search problem (MLHRSP), plays a pivotal role in the recovery of an unknown
private key from a known public key.

Problem 1 (MLHRSP). Consider an n-bit Mersenne prime p = 2™ — 1 and
a positive integer w. Let f and g be two n-bit random strings characterized by a
Hamming weight of w. The objective is to extract the values of f and g from the
information provided by the equation h = f/g (mod p) with a given h.

The second challenge, termed the Mersenne low Hamming combination search
problem (MLHCSP), is equally significant in the context of recovering an
unknown private key from a given public key.

Problem 2 (MLHCSP). Consider an n-bit Mersenne prime p = 2" — 1, a
positive integer w, and a uniformly random n-bit string r. Let f and g be two
n-bit random strings with a Hamming weight of w. The objective is to extract
the values of f and g given (r, t) = (r, f-r+ g (mod p)).

Alongside the lattice-based attack and meet-in-the-middle attack mentioned
above, other possible attack types have been presented in [8,9,26]. We study
lattice-based cryptanalysis in this paper and briefly describe two representative
attacks as follows.

Beunardeau et al. [4] handle MLHRSP based on a key insight: when f and g
satisfy f,g < /p, the equation h = f/g (mod p) can be exploited to deduce f
and g. This recovery is facilitated by employing the lattice reduction algorithm
in a 2-dimensional lattice. The attack achieves private key recovery from a public
key with a probability of 272%. To delve deeper, consider the construction of a
2-dimensional lattice A generated by

1h
(0 p) '
The lattice determinant is det(A) = p, aligning with the Gaussian heuristic, thus
it has a vector of norm approximately ,/p. Therefore, the vector (g, f) resides as
a short vector within this lattice. When f < /p and g < ,/p hold simultaneously,
recovery of f and g ensues with an approximate (1/2)?% probability, driven by
their Hamming weight of w.

Furthermore, a refined attack can apply to the bit-by-bit encryption using
the equation ¢ = (=1)™ - (a - h 4+ b). When both a and b satisfy a < ,/p and
b < /p, the use of lattice reduction algorithm in a 3-dimensional lattice leads to
recovery of a, b, and the plaintext bit m. Expanding this attack to MLHCSP with
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the equation t = f-r+g¢ (mod p) is similar and the attack’s success probability
remains the same.

It is essential to recognize that Beunardeau et al.’s attack leads to recovery
of weak keys, extracting a private key from known public key with a 272% prob-
ability. This approach is further developed through random partition technique
using higher-dimensional lattices. Thus, the private key can be recovered from
any public key with a time complexity of O(22%).

Coron-Gini’s Attack [12] is a modified version of Beunardeau et al.’s attack
targeting the key encapsulation mechanism. In contrast to extracting the pri-
vate key, this attack breaks the indistinguishability of ciphertexts. To be specific,
given a public key (r,t) and a ciphertext (c1,cz), this attack effectively differen-
tiates between m = 0 and m # 0. When m = 0, one has £(m) = 0, which yields
¢t =a-r+by and ¢o = a-t+ by. Provided a, by, and by are all less than p?/3,
recovery of a, by, and by through lattice reduction algorithm is feasible. Conse-
quently, the attack’s success probability is (2/3)3% ~ 2717 outperforming the
original success probability. By applying a similar random partition technique,
the attack complexity to compromise the indistinguishability of any ciphertext
can be reduced to O(21:7°%).

Our Contribution. We concentrate on an enhanced examination of lattice-
based cryptanalysis related to MLHRSP, a challenging hard problem in the realm
of AJPS. The emphasis lies in refining existing attack strategy and addressing
unbalanced scenarios that arise when f < \/p < gor g < ,/p < f, instead of
solely focusing on the balanced case where both f and g are below ,/p. Through
this, we aim to augment the effectiveness of current attacks. An additional insight
relates to the utilization of lattice reduction algorithm, i.e., the LLL algorithm
under Gaussian heuristic in previous lattice-based attacks. To be specific, we
recognize the unexplored advantage of the LLL algorithm in solving modular
polynomial equations associated with MLHRSP.

We start by revisiting the key equation of MLHRSP, that is h = f/g (mod p).
This equation can be transformed into a bivariate modular polynomial equa-
tion as 1 — hze = 0 (mod p), where the desired root (z7,x3) corresponds to
(f,9). This allows us to apply lattice-based solving strategy without confining
our attack to the previous f and g constraints. Consequently, the unbalanced
scenarios like f < \/p < gor g <,/p < f become tractable, expanding the range
of exploitable weak keys.

Moreover, our proposed attack increases the success probability from 272% to
Vrw3/?272w=1 improving Beunardeau et al.’s attack by a factor of /mw3/2/2.
To validate the correctness and efficiency of our attack, we provide a numerical
attack instance that succeeds under our proposed strategy while failing under
the previous one.

Organization. This paper is structured as follows. In Sect. 2, we provide essen-
tial preliminaries, including the lattice-based method for solving modular poly-
nomial equations. Section3 presents our improved attack along with detailed
success probability analysis. The experimental results for validating our pro-
posed attack are presented in Sect. 4. Finally, we draw our conclusions in Sect. 5.
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2 Preliminaries

We present the fundamental concepts required for our attack. These include
the lattice reduction algorithm, i.e., the LLL algorithm proposed by Lenstra,
Lenstra, and Lovész [19], and Coppersmith’s lattice-based method [10,11], which
was later refined as Howgrave-Graham’s lemma [17]. Additionally, a solving con-
dition essential for finding the root of polynomial equations is introduced. For a
more comprehensive understanding, interested readers can refer to [21,22].

Let us begin by defining lattice A as the set of all integer linear combinations
of linearly independent vectors by, bs, ..., b, € R™. In other words, a lattice can

be expressed as
A= {Zzlbz L2 GZ}
i=1

The lattice determinant denoted as det(A) is calculated as y/det(BBT), where
each b; is considered as a row vector of the basis matrix B. When dealing with a
full-rank lattice with w = n, the lattice determinant becomes det(A) = |det(B)].

The LLL algorithm [19] is a core mathematical tool for efficiently finding
approximately short lattice vectors. As proven by [21], the LLL algorithm yields
a reduced basis (v, va,...,v,) with the following property, where ||v;|| denotes
the Euclidean norm of vector v;.

Lemma 1. The LLL algorithm outputs a reduced basis (vi,va,...,vy,) of a
given w-dimensional lattice A satisfying

w(w—1)
||v;|| < 27@FT=9 det(A) S, fori=1,2,.. ., w.

Its time complexity is polynomial in w and in logarithmic maximal input vector
component.

An important lemma introduced by Howgrave-Graham [17] provides a prin-
ciple for determining whether the root of a modular polynomial equation also
corresponds to a root over the integers. This lemma concerns an integer poly-

nomial g(z1,...,x,) = >, cih.__?,;n:r’f ~-xin o and its norm ||g(x1,...,2,)| =
2ol il
Lemma 2. Let g(x1,...,2,) € Z[x1,...,2,] be an integer polynomial, consist-
ing of at most w monomials. Let R, X1, ..., X, be given positive integers. If the
two following conditions are satisfied:
(1) g(ay,...,2%) =0 (mod R), for|z}| < Xy, ...,|zk] < X,

Then g(x7,...,2%) = 0 holds over the integers.

Combining the LLL algorithm’s outputs with Howgrave-Graham’s lemma,
we can efficiently solve modular/integer polynomial equations. Suppose that we
have calculated the first £ many reduced vectors (vi,vs,...,vs), due to

w(w—1) w(w—1)
||v;|| < 253@FT=0 det(A) T < QT (@D det(/l)ﬁ, fori=1,2,...,¢.
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The key to success lies in satisfying the condition

2% det(/l)?ﬁ%e < i

Vw
It reduces to wlw—1) t1_e
det(A) < R*H-f2~ "7 w2

We always have £ < w < R and hence it further leads to det(A) < R“~¢ with
a tiny error term e. We finally derive the following asymptotic solving condition
as

det(A) < R, (1)
which allows us to effectively solve given modular/integer polynomial equations.

The lattice-based solving strategy consists of the following stages. Initially, we
generate a set of shift polynomials using the provided polynomial f(z1,...,z,)
and estimated upper bounds X7, ..., X,,. These shift polynomials are specifically
designed to share a common root modulo R. Subsequently, we generate a lattice
by converting the coefficient vectors of each shift polynomial g;(X1z1, ..., Xnz,)
into row vectors of a lattice basis matrix. Utilizing the LLL algorithm, we then
obtain the first few reduced vectors. These vectors are further transformed into
integer polynomials h;(z1,...,z,). Once we ensure that the resulting integer
polynomials h;(z1,...,z,) are algebraically independent, the equation system
can be effectively solved using trivial methods, thus extracting the desired root
(x7,...,2%).

The generation of lattice stands as a pivotal stage and several studies like
[5,15,18,20,24] have focused on constructing an elegant lattice basis matrix with
optimized solving conditions. Additionally, the extraction of the common root
can be accomplished using resultant computation or Grébner basis computation
[3]. The running time primarily depends on computing the reduced lattice basis
and recovering the desired root, both of which can be efficiently achieved in
polynomial time with respect to the inputs.

We note that the lattice-based solving strategy is a heuristic approach, as
there is no assurance that the derived integer polynomials will always be alge-
braically independent. However, in the realm of lattice-based attacks, it is com-
monly assumed that the polynomials obtained through the LLL algorithm pos-
sess algebraic independence. While some limited research may contradict this
assumption, it is widely accepted and, for the sake of efficiency, we adopt the
following assumption throughout this paper. We assume that the obtained inte-
ger polynomials are algebraically independent, facilitating the efficient recovery
of their common root.

3 Improved Lattice-Based Attack

We present the formulation of MLHRSP in modular polynomial equation form.
Given h = f/g (mod p) with a known h, we derive a bivariate polynomial
f(z1,22) := 21 — haa, yielding the modular equation

f(z1,22) =0  (mod p), (2)
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with the root (z7,23) = (f, g). To solve this bivariate homogeneous linear equa-
tion, we employ two distinct lattice-based solving strategies described in [15,
Theorem 3] and [20, Theorem 7|, respectively.

Basic Strategy. We present a polynomial-time attack employing the lattice-
based solving strategy used in [15, Theorem 3]. We denote the upper bounds of
the desired root (z1,2) as X; = p** and X, = p*2 respectively. Defining shift
polynomials for a predetermined positive integer s, and non-negative integers i,
and io, ,
i in) (T1, 02) 1= 23 [ (w1, 2)p™ ™", 0 <dy 44 < s

Therefore, parameter R indicated in the lattice-based solving strategy is equal
to p®.

Our attack involves transforming the coefficient vectors of gj;, i,1(X1271, Xo72)
into row vectors of a lattice basis matrix B. Before that, we establish the
monomial order and polynomial order. The former order < corresponds to

. . -/ -/
11 ,.02 102 s
ri'xy < xtay if
. . ./ i . . ./ ./ . -/
11 +12 <13 F+19 Or 11+ 12 =17 + 1y, 11 <17
The latter order < corresponds to gj;, i,] < gjit i) if
. . -/ -/ . . -/ -/ . -/
11+ 12 <ty +1y Or 11 +1i2 =19 +ig, 11 <17.

Moreover, the leading monomial of gj;, j,)(71,22) is :v’fx?ps’“. Representing
derived coefficient vectors from gp;, ,)(X121, Xox2) as b; for i = 1,...,w, we

generate a lattice
w
A= {Zzzbl L2 EZ}.
i=1

The lattice dimension w can be calculated as

s s—11

_ _(s+1)(s+2)
w—z Zl—f.

11=012=0

We provide an illustrative example of the lattice basis matrix B when setting
s = 2. The shift polynomials are listed as follows.

9[0,0] (w1, 22) = l’ng(JJL 952)172 = pz,

g1 (1, 2) = 23 f° (21, 22)p” = P,

gp,0) (1, T2) = 29 fH (@1, w2)p" = pz1 — hps,

g[0,2] (x1,22) = $§f0(5€17$2)}?2 = p2$§,

gn (21, w2) = w5 f (@1, 22)p' = priws — hpas,

giz,0) (21, 72) = o9 f2 (1, 20)p° = 22 — 2hay w9 + W23
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Thus, substituting x; with X;, we construct the following w X w lattice basis
matrix B that is

1 To T x% T1x2 x%

goo|p* 0 0 0

gjo,1| 0 p?’Xy 0 0
gn,0|0 —hpXopX1 O
go2|0 0 0 p2X2
guy0 0 0 —hpX3 pXiX,
92,00 0 0 h2X2 —2hX;X, X?

o O o O

0
0
0
0
0

The corresponding matrix diagonal elements are X leé2 ps~4 for 0 < i; +i9 < s.

Following the lattice-based solving strategy, we calculate the lattice deter-
minant det(A) = p® X7' X352, where the respective exponents s,, s; and s, are
computed as

S s+ 1)(s+2)
sp—ZZ(s—zl)—f,

)

® = . s(s+1)(s+2
SQZZZZQZ—( g( )

This relates to the derived solving condition (1), i.e., det(A4) < R¥ with R = p®,
which yields

»
&
Il
~.
=
Il
»
2
®
4
—_
S~—
=
»
4
[\
S—

s(s+1)(s+2) s(s+1) (s42) o 5D (s 42)
3 6 p 2

D (X1X5)

With z; and xo bounded by X; = p& and X, = p&2 respectively, we simplify
the exponents over p to obtain
1

3t (&1 +&) <

)

| =
N | =

which further reduces to
& +& <1 (3)

Improved Strategy. We show another polynomial-time attack employing the
lattice-based solving strategy mentioned in [20, Theorem 7]. The upper bounds
of the desired root (z1,23) are denoted by X; = p* and X, = p*? respectively.
Defining shift polynomials for a predetermined positive integer s, and a non-
negative integer 17,

gi(w1,70) 1= 25 fi(x1, 2)p* ¢, 0<i<s.
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Thus, parameter R indicated in the lattice-based solving strategy is equal to p°.
Our attack involves transforming the coefficient vectors of g¢;(Xix1, Xoxs)
into row vectors of a lattice basis matrix B. We define the same monomial order

and polynomial order as in the previous basic strategy. Moreover, the leading

monomial of g;(z1,z2) now is ziz5 *p*~*. Representing derived coefficient vec-

tors from g; (X 21, Xaws) as b; for i = 1,...,w, we generate a lattice

A= {izibi:zi EZ}.
1=1

The lattice dimension w can be calculated as

S

w:21:5+1.

i=0

Note that we shall construct a lower-dimensional lattice compared to the previ-
ous one, which is a significant advantage. We provide an illustrative example of
the lattice basis matrix B when setting s = 2 as before. The shift polynomials
are listed as follows.

go(z1,22) = $§f0(3717$2)p2 = p21’57

g1(z1,22) = a3 f (w1, 22)p" = pr122 — hpas,

go(w1, ) = x5 (21, 20)p° = 23 — 2ha19 + 223,

Thus, substituting x; with X;, we construct the following w X w lattice basis
matrix B that is

3 Ty D
90| P*X3 0 0
g1|—-hpX3 pX1X2 0
9| h2X2 —2hX, X, X2

The corresponding matrix diagonal elements are X} X5 “ips~ifor 0 < i < s.

Following the lattice-based solving strategy, we calculate the lattice deter-
minant det(A) = p®» X7+ X352, where the respective exponents s,, s1 and sy are
computed as

S

sp:52:§:(s—i):@7

1=0
u 1
=Y i= 3(52;)
1=0

This relates to the derived solving condition (1), i.e., det(A4) < R¥ with R = p®,
which yields

s(s+1)

(pX1Xo) 2 <poth.
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With z; and xo bounded by X; = p& and X, = p& respectively, we simplify
the exponents over p and have

%-(l+fl+€2)<1,

which further leads to
fl —+ 62 < 1.

Interestingly, we are able to obtain the same condition with a lower lattice dimen-
sion and smaller lattice determinant (if the parameter s is set the same).

We discuss how to effectively find the desired root in our attack. Suppose we
have several integer polynomials h;(x1,x2) derived from the proposed lattice-
based strategy, where h;(z7, x3) = 0 is satisfied. Their common root (%, x3) can
be recovered using resultant computation. Otherwise, we compute the greatest
common divisor h(z1,x2) of h;(x1, x2) and turn to solve it. As f(x1, z3) is homo-
geneous, we assume the homogeneity of h(z1,x2) and introduce a new variable
7 defined as 7 := x;/xy. With this, we define h(7) := h(z1,z2)/x3, where §
is a known constant, and ensure that h(x%/x%) = 0. We can determine x%/x%
by employing trivial methods to extract the rational roots of h(7). Suppose %
and x% are coprime, we can finally deduce their values from the numerator and
denominator of the derived root 7. In the validating experiments, we use the
Grobner basis computation to derive the solution (z},x3) more efficiently.

Regarding time complexity, it primarily relies on the polynomial-time LLL
algorithm, which is polynomial in both s and log(p®). Given that s is a fixed
integer, the attack’s time complexity is a polynomial of logp = n. We present
Proposition 1 as a conclusion of our improved attack.

Proposition 1. Let p = 2" —1 be an n-bit Mersenne prime and w be a positive
integer. Let f and g bounded by f < p&* and g < p%2, denote two unknown n-
bit random strings characterized by a Hamming weight of w. Given h with the
equation h = f/g (mod p), then f and g can be efficiently recovered in time
polynomial in n if & + & < 1.

It is worth noting that the condition &; +&5 < 1 is identical to X; Xs < p and
also f-g < p. This condition covers the previous attack result where both f and
g are less than /p. Furthermore, our advancement serves to extend the attack
constraint for f and g, thereby significantly broadening the potential range of
applicability.

Success Probability Analysis. We proceed to conduct a theoretical analysis
of the success probability associated with our proposed attack. To simplify the
subsequent examination, we will base our calculations on the representations of f
and g using bit strings. When considering the scenario where w is approximately
\/n, let Pr; denote the previous success probability of Beunardeau et al.’s attack.
Given that f and g are both less than ,/p, namely their w many ‘1’ bits are chosen
from low |n/2] bits, the expression for Pr; can be formulated as follows.

(IO (2l
N AT6 ‘<n!un/zj—w>!> e
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Furthermore, we introduce Pry to represent the success probability associated
with our improved attack. Our aim is to compute the value of Pry, which is
expressed as

RS TOT
P = 2, Sy

and concurrently determine the improvement ratio denoted by r := Pry/Pry.
From combinatorial mathematics [14, p. 169], it can be seen that the following
combinatorial identity holds.

2 ()06

()
2w—+1
(o) (2)
Due to Stirling’s approximation and w & y/n when n tends to infinity, the
improvement rate r can be further calculated as follows.

_ (27;;11)
() ()
(n+ 1)/ (w!(A —w))?
(2w + 1)!(n — 2w)!(A!)2
~ 27T(n+1)(nTH)"+1-27‘(11)(%)2111.QW(A_w)(A%wFA—Qw
T V2rQu (220 2r(n — 2w) (5202w - 2w A(4)2A
V2r(n + 1)n+% w2t L (A = q)2A- 2wt
T Qe+ 12073 - (n — 2u)n 2wt E - A2AHL
O VEm(w? 4 1) el (et 2et

T Gut )P (w7 — 2w 2k (e

Therefore, we obtain

PI’Q =

B Tﬂé)wtmﬂ (w? + 1)w2+g w2w+l (w? — Qw)w2—2w+1
- (%)w2+1 . 92w+3 (wz)w2+1 (w + %)2w+% (u}2 B 2w)w2—2w+%
_ VT (w? + 1)(“)? —2w) (14 %)wQ—H (1 L )yl

2 w+ 35 w 2w+ 1
~ g . w% e eil

where A := | ] for simplicity. Therefore, we obtain the success probability Pry

of our improved attack that is approximately equal to /rw?®/22-2w=1,
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4 Validating Experiments

To validate the validity and effectiveness of our improved attack on MLHRSP,
which exploits Proposition 1 by the basic and improved strategies, we conducted
a series of numerical experiments. These experiments were performed on a com-
puter running a 64-bit Windows 10 operating system with Ubuntu 22.04 installed
on WSL 2. The system had a CPU operating at 2.80 GHz and 16 GB of RAM.
The experiments were conducted using SageMath [25] with Python, and the
parameters for generating the experimental instances were randomly chosen.

We generated the MLHRSP instances with suggested parameters p = 2" — 1,
n, and w in each experiment. Based on two randomized integers f and g satisfying
f g < p, we then derived the corresponding public key h using its key equation
h = f/g (mod p). Furthermore, we gradually increased f and g to achieve larger
& and & for performing a successful key recovery attack. We provide an open
source implementation of the proposed attacks and the source code is available
at https://github.com/MengceZheng/MLHRSP. Using this implementation to
execute the key recovery attacks, we selected a suitable parameter s to construct
a lattice. Moreover, we ran 5 trials and ensured a 100% attack success rate for
each of the different experimental parameter settings.

The experimental results are presented in Table 1. The n and w columns indi-
cate the specific parameters of the MLHRSP instances. The & and & columns
present the experimental results on bounds of randomly generated f and g. The
lattice settings are controlled by s, and the lattice dimension is provided in the
w column. The average time consumption of the proposed key recovery attack
is recorded in the Time column and measured in seconds.

During each experiment, we collected sufficient polynomials that satisfied the
solvable requirements after running the LLL algorithm. As indicated in Table 1,
the running time increases as the lattice dimension w or the modulus p becomes
larger. The reason is that it is mainly influenced by the lattice dimension and the
lattice basis matrix entries. Moreover, we observe that the more unbalanced the
private keys are, the more time consuming the attack is. In more detail, the time
consumption of lattice reduction and root extraction is roughly a few seconds.

We obtained several integer polynomials by transforming the derived vectors
into polynomials and then calculated their greatest common divisor h(z1,x2).
The integer polynomial h(x1,x9) was always of a particular homogeneous form
ayx1 —asxo. Therefore, we obtained the desired root (27, x3) = (a2, a1) assuming
f and g were coprime. Furthermore, we used a more efficient mathematical tool,
namely the Grébner basis computation to directly extract the solution (27, z3).
Then we recovered f and g, which allows us to break the AJPS cryptosystem.
The experimental results reached the theoretical bounds by constructing lattices
of low dimension, where the lowest dimension can be down to 3. Additionally,
we provide the following toy examples to aid in numerical understanding.

Example 1. We provide a numerical example to illustrate key recovery attack
utilizing Proposition 1 on the AJPS cryptosystem with the basic strategy. In
this example, we consider a toy scenario where we have set n = 521 and hence
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Table 1. Experimental results of the key recovery attacks on MLHRSP

Improved Lattice-Based Attack on MLHRSP

n w & | & | basic strategy improved strategy
s |w | Time* s |w | Time*
521 10/0.5 |05 |7(36 0.506s |78 0.116s
0.4 106 |7|36 0.550s |78 0.130s
0.3 0.7 |[7]36 0.646s |78 0.135s
2203 20/0.5 |0.5 |5|21 3.906s |56 3.675s
0.2 |08 |5 21 4.043s |56 3.757s
0.1 |09 |5 21 4.255s |56 3.869s
3217 |25/0.5 |0.5 (3|10 20.237s |3|4 17.095s
0.65[0.35|3 10 21.489s |34 18.125s
0.75]0.253 10 22.826s |34 19.024 s
4253 |30(0.5 |0.5 [3|10| 52.097s |23 48.097s
0.35/0.65 3|10 53.312s 2|3 48.648s
0.25/0.75 310 54.229s 2|3 49.052s
9689 |45/0.5 |0.5 |3|10|1558.614s |3 |4 | 1528.035s
0.35]0.65|3 10 1606.880s |3 |4 | 1572.536s
0.15/0.85 3|10 |1638.942s |3 |4 | 1598.409s
11213 |50/0.5 [0.5 |3|10|3013.204s |3 |4 |2886.811s
0.4 /0.6 3]10/3047.022s |3|4 2906.314s
0.3 /0.7 13/10/3071.708s |3 |4 | 2927.524s
0.2 /0.8 |3/10/3106.117s |3 |4 |2954.749s
0.1 /0.9 3]/10|3127.506s |3|4 | 2976.037s
19937°70/0.5 (0.5 (216 |30015.984s |23 |28950.5995
04 |0.6 |26 |30052.953s 2|3 |28965.218s
0.3 /0.7 2|6 |30112.863s 2|3 |28995.330s
0.2 |0.8 |26 [30164.167s 2|3 |29140.652s
0.1 |09 |26 [30202.318s 2|3 |29232.141s
23209° |75/ 0.5 | 0.5 |26 |58070.592s 2|3 |56919.641s
0.6 104 2|6 |58136.852s 2|3 |57138.886s
0.7 10.3 2|6 |58206.983s 2|3 |57237.149s
0.8 /0.2 2|6 |58285.447s 2|3 |57334.223s
0.9 /0.1 2|6 |58359.950s 2|3 |57449.701s

# This recorded the time consumption including
lattice reduction, integer equation recovery, and root extraction.

> One trial was performed in each experiment setting using faster
implementation for efficiency and the corresponding running time

was estimated.

lattice creation,
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p =252 — 1, and we are working with w = 10. We assume that two unbalanced
secret parameters f and g are less than 252 and 249, respectively. The specific
values for this example instance are as follows.

p = 686479766013060971498190079908139321726943530014330540939446'
345918554318339765605212255964066145455497729631139148085803\
7121987999716643812574028291115057151,

h = 154343905781433556619909067692069203322475442150730494258569\
202850224261065191872563678854092758603703688697463484625645\
0124746881433562792808921718557271307.

To conduct our basic key recovery attack, we set s = 3 to construct a
10-dimensional lattice. After less than one second, we successfully extract the
desired root (x7,2%). The obtained root values are as follows.

x] = 2323306724327516,

x5 = 381078635798835018906098610511937601438852185612681743552458\
943839072412774950738695778995080053337769929799580564419759\
766509943792567582721.

Thus, f and g are recovered as follows.

f = 2323306724327516,

g = 381078635798835018906098610511937601438852185612681743552458\
943839072412774950738695778995080053337769929799580564419759\
766509943792567582721.

It can be easily verified that f, g, h and p do satisfy the key generation of
the AJPS cryptosystem, confirming the success of applying Proposition 1 to the
Mersenne low Hamming ratio search problem. Moreover, we confirm that the
previous attack using a 2-dimensional lattice is invalid.

Example 2. We provide another numerical example to illustrate key recovery
attack utilizing Proposition 1 on the AJPS cryptosystem with the improved
strategy. In this example, we also consider a toy scenario where we have set
n = 521 and hence p = 252! — 1, and we are working with w = 10. We assume
that two unbalanced secret parameters f and g are less than 2390 and 213!
respectively. The specific values for this example instance are as follows.

p = 686479766013060971498190079908139321726943530014330540939446'
345918554318339765605212255964066145455497729631139148085803\
7121987999716643812574028291115057151,

h = 157215078908066856483109297065622826700344007691843666348046\
622548638689554972213779955101736551938803681603257590155467\
9982096056923401503970040749904852959.
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To conduct our improved key recovery attack, we set s = 2 to construct
a 3-dimensional lattice. After less than one second, we successfully extract the
desired root (x%,2%). The obtained root values are as follows.

a7 = 130026620506872683435266440889561756647023327329779536478254\
7236924976239227630672771919293698599597927345039798697984,
x5 = 680564754124286577802084753380397294081.

Thus, f and g are recovered as follows.

f = 130026620506872683435266440889561756647023327329779536478254\
7236924976239227630672771919293698599597927345039798697984,
g = 680564754124286577802084753380397294081.

It can be verified that f, g, h and p do satisfy the key generation of the AJPS
cryptosystem, confirming the success of applying Proposition 1 to the Mersenne
low Hamming ratio search problem. Furthermore, in contrast to the failure of
the previous attack on unbalanced f and g using a 2-dimensional lattice, we were
able to successfully recover them using a 3-dimensional lattice.

5 Concluding Remarks

We revisit the Mersenne number-based AJPS cryptosystem, delving deep into
the associated hard problems it presents. Our goal centers on enhancing the
existing lattice-based attack targeting the Mersenne low Hamming ratio search
problem. Our improved attack adopts a specific lattice-based solving strategy,
tailored for solving bivariate polynomial equations. This results in two notable
enhancements to our key recovery attack. Firstly, we expand the attack range of
susceptible scenarios, amplifying our capacity to uncover vulnerabilities in weak
keys. Secondly, we increase the attack’s success probability when considering
unbalanced attack cases. Furthermore, we conduct a series of numerical experi-
ments to validate the practicality and effectiveness of our improved attack.

The major limitation of our improved lattice-based attack on MLHRSP is
that it cannot be applied when facing the enhanced key generation algorithm. To
be precise, our proposed attack is unavailable when one discards and resamples
f and g again if both of them fall within our attack range. However, the previous
attack [4] using the random partition technique is still effective. Hence, future
research should be undertaken to explore how to incorporate a similar random
partition technique into our improved lattice-based attack.
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