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ARTICLE INFO ABSTRACT

MSC: RSA (Rivest-Shamir—Adleman) is a fundamental algorithm in information security for public key cryptography.
94A60 Recently, a novel attack scenario of RSA with two implicitly correlated private keys, i.e., implicit-key attack was
Keywords: formulated. The lattice-based cryptanalytic strategy was proposed to factor RSA moduli using given implicit
RSA hints referring to known quantities of unknown common bits distributed among unknown private keys. In this
Cryptanalysis paper, we review the simple basic scenario in which two RSA instances share known amounts of MSBs (most
Lattice
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significant bits) and LSBs (least significant bits). We extend it to a more complex situation, where the amounts
of MSBs and LSBs shared along with a few common blocks of middle bits are known. In addition, based on the
above theoretical analyses, we present a generalized implicit-key attack framework. Our results disclose the

vulnerability of RSA using correlated private keys with implicit information. Furthermore, numerical computer
experiments are conducted to assess the validity of basic and extended implicit-key attacks.

1. Introduction

Since its invention, RSA [1] has been the most well-known cryp-
tosystem in public key cryptography. The critical equation is ed =
1 mod @(N) for the following definitions of e,d, N and ¢(N). Modulus
N = pq results from multiplying two prime numbers with the same
bit-size. Two keys e, d are called the public and private exponents,
respectively. Besides, ¢(N) is Euler’s totient function and is equal to
(p — 1)(g — 1). The encryption algorithm reckons ¢ = m® mod N for a
plaintext m while the decryption algorithm computes ¢? mod N for a
ciphertext c. Its security has been studied in [2,3] etc. and among them,
Coppersmith [4] introduced the lattice-based method. After that, fur-
ther variant attacks were proposed such as [5-15]. In the lattice-based
method, a lattice reduction algorithm, namely the LLL algorithm [16]
is always used as the main tool and small roots (associated with secret
values) of modular or integer polynomial equations are the crucial
targets to be solved.

The partial key exposure attack, which exposes some of the private
key to the attacker, is one of the aforementioned attacks on RSA.
The first analysis was done by Boneh et al. in [17]. Ernst et al. [8]
proposed specific attacks that are effective up to full-size exponents
according to a common heuristic assumption. Recently, more related
works [12-14] have been presented. This attack type resembles the
challenge of breaking RSA using an oracle that explicitly discloses
several consecutive bits of d. On the other hand, the implicit factoring
attack was proposed by May and Ritzenhofen [18] using an oracle that

provides implicit information about p. Given two different RSA moduli
N, = p;q; and N, = p,q, with a-bit ¢; and p,p, sharing at least
¢t many LSBs, one can recover ¢, and g, by the lattice-based method
if + > 2(a + 2). The attack bound was improved to r > k%a using
multiple oracle queries in the case of k RSA moduli. Following that,
new results have been presented, including shared MSBs and shared
middle bits [19] and other improved methods [11,15,20].

Recently, Zheng and Hu [21] concentrated on an interesting and
restrictive attack scenario in which implicit knowledge about the pri-
vate keys is known. This work was motivated by the implicit factoring
problem and the partial key exposure attack. Although expected, side-
channel attacks such as [22,23] might not provide explicit information
like some disclosed private key fragments. Instead, we might readily
determine a lot of implicit details about each pair of two correlated
private keys. In this paper, we informally state the implicit-key attack
problem as follows.

Let (Ny,e;,d;) and (N,,e,,d,) be two different RSA instances for
N,., N, of the same bit-size. Assume that d, and d, are two distinct
private keys with the same bit-size since MSBs of the shorter key
can be padded with zero to make it true. Suppose that d, and d,
have some implicit information known, namely the MSBs, LSBs and
other middle bits quantities they share. Based on the knowledge of
such implicitly correlated private keys, our goal is to factor N, and
N, in polynomial time.
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Fig. 1. Two distinct examples of two correlated private keys with implicit information: (a) basic case; (b) complex case.

The illustrative examples are depicted in Figs. 1(a) and 1(b), which
divide the correlated private keys with implicit information into the
basic and complex cases. More concretely, the basic case analyzed
in [21], i.e., Fig. 1(a) demonstrates how d,,d, share certain MSBs
and LSBs, leaving one diverse block in the middle. The quantities of
shared MSBs and LSBs constitute the pertinent implicit information.
Comparatively, the complex case, i.e., Fig. 1(b) shows that some MSBs,
LSBs, and middle bits of d;,d, are shared, leaving multiple distinct
middle blocks. The relevant implicit information is the amounts of
several common middle bits.

The implicit-key attack is different from cryptanalyses dealing with
one RSA instance. The security was investigated in [24,25] when given
more RSA key pairs with the same modulus by lattice-based techniques.
In our opinion, it only takes partial advantage of the implicit infor-
mation about the private exponents. On the other hand, Hinek [26]
analyzed another scenario in which many RSA instances using the same
private key are given. The implicit information for this case is that all
the private exponents are identical. Our work covers the above two spe-
cial cases and makes further improvements. There are various scenarios
in which two separate RSA instances are used, e.g., the application
Dual RSA [27] to blind signatures and authentication. (Unfortunately,
our strategy cannot be applied to Dual RSA since there is no implicit
information of d;,d, and even e, e, are identical.)

When two RSA instances are produced with backdoor keys [28]
or imperfect randomness [29,30], we might encounter the implicit-
key attack problem. Based on the theoretical interests, we consider the
following topics. One is to expose the RSA vulnerability further by using
weaker criteria like implicit disclosure about private keys. Moreover,
we investigate how previous attacks in the literature can be extended by
combining the partial key exposure attack and the implicit factorization
problem.

Recently, Zheng et al. [31] studied a similar problem, which focused
on the attack scenario when given two or more RSA instances having
an implicit relation of the related private keys. The authors proposed
lattice-based attacks by solving modular polynomial equations and ap-
plying subtle lattice techniques. We want to point out that our proposed
strategy is based on solving integer polynomial equations, which is
different from Zheng et al.’s attack. Besides, the prerequisites about
known implicit information required in ours and [31] are different. We
study the impact of various implicit relations between two correlated
private keys on the security of RSA. Conversely, Zheng et al. studied the
impact of the number of correlated private keys sharing a fixed implicit
relation.

In our solution to the implicit-key attack problem, an integer poly-
nomial equation is derived from two given RSA instances. The unknown
variables include the sums of unknown primes and the unknown dif-
ferences between two private keys. We adapt the Jochemsz-May strat-
egy [9,32] that summarizes Coppersmith’s techniques [4] and Coron’s
reformulation [7,10] for extracting the common root of multivariate
integer polynomial equations. We finally obtain the sums of unknown
primes and hence factorize given RSA moduli. To achieve theoretical ef-
fects, it relies on the following heuristic assumption. Similar to previous

works like [8,9,12-15,20,31,33] in the literature, Assumption 1 holds
in the practical experiments and will not be involved in the propositions
below.

Assumption 1. Our lattice-based attacks yield algebraically inde-
pendent integer polynomial equations, and the common root can be
efficiently solved using the Grobner basis computation.

Unless otherwise specified, N = 2/ throughout this work refers to
an integer of the same bit-size as the given RSA moduli. The proposed
attack result in [21] with respect to the basic implicit-key attack on
standard RSA is expressed in Proposition 1. Because the relevant lattice
dimension may preferably be large, it should be noted that the offered
theoretical findings are asymptotic. Fortunately, the experimental re-
sults using lattices with low dimensions as provided in [21] are very
close to the theoretical ones.

Proposition 1 ([21]). Let N, = p,q, and N, = p,q, be two distinct
RSA moduli of the same bit-size |, where primes p,,q;,p,,q, are of the
same bit-size 1/2. Let e, e,,d;,d, satisfy e;d; = 1 mod @(N,) and e,d, =
1 mod @(N,), such that e,,e, and d,,d, have the same bit-size | and &,
respectively. Suppose that d, and d, share ;! MSBs and f,! LSBs. Then
N, and N, can be factored in polynomial time if

5 < (B + D + 107 4+ 2072) — 1072 — 3073
4 + 307 + 4072

where f = B, + p, and © > 0. Let 7, denote the unique positive root that
satisfies

, (€8]

120x* + 180x> + (46 — 208)x> — 8fx — f— 1 = 0. @)

Hence, the above condition on & reaches its maximal upper bound that is
(B + 1)(1 + 107y + 2072) — 1077 — 307

o< 4+ 307, + 4072 ’

The parameter 7 is the optimal value that leads to the maximum
of the right side of (1). This value can be calculated using numerical
methods. Our insecure bound on § for § = 0 is § < 0.280 (using
the optimized 7z, = 0.120), which is weaker than Boneh-Durfee bound
5 < 0.292 reported in [5]. It happens because we make use of two RSA
instances with no implicit information instead of only one instance.
Since more unknown variables might weaken the upper bound on 6,
Boneh-Durfee attack works more efficiently when little or even no
implicit information is given. However, our approach has the advantage
of being more flexible in terms of attack cases and is useful in certain
situations where the Boneh-Durfee attack is not applicable.

We develop the findings and strategy in the previous work [21].
In addition to the basic attack, we have analyzed two special cases
and further propose an extended attack. In particular, we extend the
implicit-key attack to a more challenging scenario in which we have
any number n of unknown middle blocks. However, as n increases, our
strategy becomes less effective. One explanation is that the running
time of such an attack is exponential in parameter n. Another reason is
that when dealing with more middle blocks, the upper bounds on the
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unknown variables are smaller. In order to verify the validity of the
extended implicit-key attack, we provide the asymptotic cryptanalytic
results by numerical experiments for n = 2.

Our contribution mainly includes the generalized implicit-key at-
tacks on RSA and the validation experimental results, which are sum-
marized as follows. We study the security of RSA with two implicitly
correlated private keys and propose the implicit-key attack problem.
We propose generalized implicit-key attacks of factoring RSA modulus
concerning its theoretical security issue. We verify the correctness and
validity of the proposed implicit-key attacks with numerical computer
experiments and always successfully obtain the factorization results.

The rest is organized as follows. Section 2 outlines the requirements
for obtaining the desired common root by using the lattice reduction al-
gorithms. The basic implicit-key attack when considering the basic case
described in Fig. 1(a) is reviewed in Section 3. The extended implicit-
key attack when handling the complex case described in Fig. 1(b)
is presented in Section 4. Section 5 provides validation results with
detailed comparison according to extensive numerical experiments.
Finally, Section 6 concludes the paper.

2. Preliminaries

We introduce the LLL algorithm [16] and the lattice-based method
that was proposed by Coppersmith [4] and further improved by
Jochemsz and May [9]. The condition for finding the roots of integer
polynomial equations is given as a mathematical consequence of the
lattice-based method. For more information, see [3,34].

The collection of all integer linear combinations of linearly inde-

pendent vectors 7)1, ,Zm is referred to as a lattice £. Thus, it can be
written as

m
L(by,....b,) = {zz,.z,. iz € Z} .

i=1
We construct an m X n basis matrix B by treating each n-dimensional
basis vector B,- as a row. The lattice determinant is det(£) = 1/det(BBT).
We only take into account a full-rank lattice with m = n since it
simplifies the subsequent analysis and improves the attack efficiency.
This is a common simplification in the lattice-based method and does
not affect the general definition of lattice determinant. Hence, we get
det(L) = |det(B)| because B is a square matrix.

Due to its effective running performance, the LLL algorithm [16]
is used to find approximately short lattice vectors. The approximately
short lattice vectors refer to the LLL-reduced lattice vectors used in the
lattice-based method. An approximately short lattice vector is a vector
whose length is close (within some constant multiples) to the shortest
non-zero vector in the lattice. These vectors play a crucial role because
they allow us to further derive several integer equations we are trying
to solve. Given an m-dimensional lattice basis vector o; = (v;, ..., v; ),
its length (i.e., Euclidean norm) is defined as ||5;|| := (Z;":l )2,
Lemma 1 is used to establish the relationship between the lengtﬁs of
the reduced lattice vectors and the lattice determinant. On the basis of
its outputs, the following lemma (that was proven in [34, Theorem 4])
is presented.

Lemma 1 ([34]). Let lattice L be spanned by a given basis (7), s 7)2, e Zm).
A reduced basis (), U, ..., U,,) is derived from the LLL algorithm satisfying

m(m—1) 1
15,1l < 2310 det(L)m =7, 1 <i < m.

The running time is polynomial in the maximal component of input vectors
and lattice dimension m.

The following lemma (i.e., [34, Theorem 14]) is a direct general-
ization of Howgrave-Graham’s lemma [35], which provides a rule for
figuring out whether a modular equation’s root is also a root over the
integers. Given a polynomial g(x;,...,x,) = Y a; _; x]' -+ x,, its norm
is defined as ||g(xy, ...

)l = (Slay, 12
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Lemma 2 ([34]). Let g(xy,...,x,) € Z[x,,...,x,] be an integer polyno-
mial, which is a sum of at most m monomials. Suppose that

1. g(x(lo), ,quo)) = 0 mod R for a positive integer R, where |x(10)| <

X, o x99 < x,,
R

2. |lglx Xy, ..., x, X )l < 7
Then we have g(x(lo), ,xE,O)) = 0 over the integers.

Thus, to solve modular or integer polynomial equations using Lem-
mas 1 and 2, we make use of the first # many vectors outputted by the
LLL algorithm. It follows that one can construct an integer equation
system to solve the unknown variables if

m(m=1)

_m(m=1)_ 1 R
2HmH =67 det(L) w7 < ——.
Jm

It leads to

m(m—1) m+1-¢
det(£) < R™102" "4 m 2
As ¢ < m < R, with a small error term ¢, it can be further simplified
to det(£) < R™¢. Hence, we roughly derive a simplified asymptotic
condition

det(L) < R™. 3

The Jochemsz-May strategy [9] is used to construct a triangular
lattice basis matrix. The lattice determinant det(£) is calculated as the
product of the diagonal elements of the constructed basis matrix. We
provide a general condition for solving small roots of integer polyno-
mial equations and sketch the lattice-based method. In practice, several
unknowns in RSA instances lead to an integer polynomial equation
used in the proposed lattice-based attacks. Because the lattice-based
method always regards a polynomial equation as a polynomial for
convenient writing and symbolic calculation, we may use polynomial
instead of polynomial equation in this sense. More concretely, we want
to find the root of an h-variate integer polynomial f(xj,...,x;) =
Y a;,,.;,X, = x;" when conducting the proposed implicit-key attack.

First, as mentioned in Lemma 2, we need to compute the upper
bounds X; on unknown variables x; for i = 1, ..., h. Moreover, X, is de-
fined as the highest potential value of a single term in f(x, x,, ..., x}).
That is

X =1 G X1, %0 X5, oo x, Xl oo

=max{|a,~1'i2W’ih|X;'X;.2 X;l"} 4)
We then define
R=X_ (X, Xy X)) (X, X)) (5)

for two non-negative integers s and ¢ to be determined in the subse-
quent lattice construction.

Then we adapt the extended Jochemsz-May strategy [9] for finding
small integer roots and use extra shifts of two variables x;_; and x;,. A
lattice basis matrix is constructed via the coefficient vectors of the shift
polynomials, which is derived from two monomial sets .S and Sk. To
do so, we define

S = U {xill x;2 X

0<jp-1.Jnst

in—2 ip—1+ip-1 Jptin . i1 P2 in s—1
h-2%h-1 XX Xt e £

and

sg= U

0<jp—1.4n<t

X, X,

ih-2 ip—1¥in-1 Jip¥in . 01 B ip s
n-2%n-1 XX Xt € fU )

(s
The parameters s and ¢ are defined as two non-negative integers satis-
fying s > 1 and ¢ > 0, which are used to control the number of elements
in the monomial sets .§ and .Sy and also control the dimension of the
constructed lattice.

The constructions of specific shift polynomials will be given in
Section 3 and Section 4, respectively. Based on our lattice construc-
tion, condition (3) finally reduces to Hf’=le’ < X, Here s, =
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Zxkl hesp\s k; is the sum of exponent k; over variable x; and s, = |.S|
is the cgrdinality of monomial set S. More details refer to the analysis
in Section 3.

Similar to the usage description of the lattice-based method in the
multivariate case in [34, Page 47]. We summarize the lattice-based
method to solve a multivariate integer polynomial equation in four
steps. The first step is to use f(x;,...,x;) and known quantities for
generating two monomial sets .S, S and constructing shift polyno-
mials g(xy,...,x;,) and g’(x;,...,x;,) having a common root (x’l, ,x;l)
modulo R. The second step is to let 5, be a row vector derived from
the coefficient vector of g(x; X, ...,x,X,) and g’'(x, X1, ..., x, X, for all
1 <i < m. Hence, one can generate the lattice £ = { 3" z,b iz, €L},
The third step is to apply the LLL algorithm on L. One can obtain the
first # many reduced basis vectors 7, ..., U, and transform the vectors
to integer polynomials f|(x,,...,x,), ..., fz(x;,...,x;,) sharing the com-
mon root (x/l, ,x;') over Z. The transformation is based on inverse
corresponding relationship used in the second step for converting the
coefficient vectors to lattice basis vectors. The last step is to check if
the derived polynomials f;(x;,...,x,) for 1 < i < ¢ along with the
original polynomial f are algebraically independent. If so, the equation
system f;(x;,...,x,) = 0 (including f(x,,...,x,;) = 0) can be solved
using the Grobner basis computation. Hence, one extracts the desired

root (x, ..., x}).
Under the above process, the first # many reduced vectors are
obtained. We discover a collection of polynomials fi,..., f, having

the shared root over the integers. Then the Grébner basis computation
is employed for extracting the common root since it is efficient for
more variables. The running time mainly depends on computing the
reduced lattice basis matrix and recovering the desired root. For the
basic implicit-key attack, both of them can be done in polynomial time.
For the extended implicit-key attack, the running time is exponential in
the number of unknown middle blocks n.

3. Basic implicit-key attack

We review the basic implicit-key attack for two RSA instances
(Ny,e,d}) and (N,,e,,d,). We first consider the general case when
e|,e, are of arbitrary bit-size and d,,d, share some MSBs and LSBs
leaving one different block in the middle. We start by considering the
typical scenario in which d,, d, share some MSBs and LSBs, leaving one
diverse block in the middle, and e,, e, are of arbitrary bit-size. Later we
focus on two special cases.

3.1. The general case

We show the following result for the general case in the basic
implicit-key attack, which was already presented in [21, Theorem 1].

Proposition 2 ([21]). Let N, = p,;q, and N, = p,q, be two distinct
RSA moduli of the same bit-size |, where primes p,,q;,p,,q, are of the
same bit-size 1/2. Let e, e,,d;,d, satisfy e;d; = 1 mod ¢(N,) and e,d, =
1 mod @(N,), such that e, e, and d,,d, have bit-size a;l, a,! and §l,
respectively. Suppose that d, and d, share ;| MSBs and f,! LSBs. Then
N, and N, can be factored in polynomial time if

— 2y~ 2 3
5< @FA=DU+10r4+20e%) 102 - 307 o ©)
4+ 307 + 4072 2

where a = a; + a5, p = p; + B, and t > 0. Let 7, denote the only positive
real root satisfying

120x* + 180x> + (86 — 20a — 20p)x>
+(16—8a —8f)x —a—f+1=0. )

The above condition on § reaches its maximal upper bound that is

(a + - (1 + 107y + 207%) — 1022 — 307>
6 < 0 0 0 0 _ %41

4+ 307y +407] 2
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Proof. The key equation ed = 1 mod @(N), with two positive integers
k, and k,, gives us

eydy =ki(Ny+1-p—q)+1,
exdy =ky(Ny+1—=py—qp) + 1.
Multiplying two equations by e,, e, respectively and then subtracting,
we have
erex(dy —dy)
=e)k|(Ny+1—=p;—q))+ey—eky(Ny+1—py —qy) —e. 8
Note that N, N, are of the same bit-size / for N = 2/ as mentioned
above. Consider that we are given d; and d, of the same bit-size 6/

sharing g,/ MSBs and B,/ LSBs. Additionally, g, or §, can be estimated

as 0. Hence, it implies that
d, = dooz(é—ﬂlﬂ + dllzﬂzl +dy. ©
dy = dg2® P+ dy 27" + dyy.

Here dy, and dj,, denote the respective shared MSBs and LSBs whilst
d,; and d,, denote two different middle bit-blocks of the private keys.
Substituting (9) into (8), it can be rewritten as

ejex(dyy — dyy )2
=e)kf(Ny+1—-p—q))—eky(Ny+1—p, —qy)+e; —e.
It further reduces to

e16,22!(dy; = dy)) + ex(N| + Dk = €;(Ny + Dy

—er ki (py +q1) + e ky(py +g5) + (e; —ey) =0.

We list the known variables (denoted by «;) and the unknown ones
(denoted by x;) as follows.

a; =e1e22ﬁ2’,

xp =dy —dyy,
ay =ey)(Ny + 1),

Xy =ky,
a3 =—e;(Ny+1),

x3 =ky,
ay = —ey,

Xy =pyt4qp,
as =ey,

Xs =Pyt qr.
ag =e, —ey.

Our goal is to discover the solution to the following integer polynomial,

f(xl,xz,xyxmxs)

=a;x| +ayx, + a3x3 + agx, x4 + asx3xs + ag. (10)

We simply do division to make the polynomial irreducible if e; and
e, have a nontrivial common divisor. In order to apply Coppersmith’s
techniques, the norm of the unknown variables should be small enough.
The upper bounds X; on each x; are calculated as follows for given
ey = N" and e, = N of arbitrary bit-size. Let § = g, + f,, we have

)(1 — N&*ﬂ’ X2 — Na1+b‘71’ X3 — Na2+671’ X4 — XS — N1/2. (11)

As we introduced the definition of the maximal norm X, in (4), it can
be computed as

X =N ag=a +a,. (12)

We use two extra shifts of x, and x5 for solving the above integer
polynomial (10). For two non-negative integers s > 1 and ¢ > 0, the
following monomial sets S and S are built.

iy iy i3 _igtjs ist] iy iy i3 iy i —
S = U {x1x2x3x4 Ja s 15‘x1x2x3x4x5€f51},

1727374 5 TT1 72737475
0<j4.j5<t
— iy o B3 datja istjs oy by 03 4 s s
Sg = U {x1x2x3x4 X .x1x2x3x4x5€f}.
0<jg.j5<t

By computing the expansion of f°~! and f*, we know the relationship

between monomials x''x?x2x*x7 in S, S and the corresponding

172737475
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exponents iy, iy, i3, iy, is. We have

i1 =0,...,s—1,
ih=0,...,s=1—1iy,

i 12131415 _ I T

X)Xy XS X, SES(: i3=0,...,s=1—i; =iy,
iy =0, 0y +1,
is=0,...,i3+1.
i1=O,---,S,
iy=0,...,5 =iy,

i i3 iy 15 _ I

xlxzxz’x4 5 ESR©3i3=0,...,s—i] — iy,
ig=0,...,i)+1,
is=0,...,03+1.

We require the constant term of f(x;,x,, X3, X4, X5), i.e., a¢ to be 1.
Thus, we define a modular polynomial f/ = ag' f mod R, where

R=X X7 Xy Xy g i 13)

as mentioned in (5). The shift polynomials g and g’ according to S and
Sy are defined as follows.

ki ko k3 ks ¢
x1x2x3x x5f~R

. ky ko k3 ks ks
g: T XX x7x, X € S,
X X11X22X33X44X 3

). ki _ky k3 kg ks ky ko k3 kg ks
g 1x x2x3x4x5R, X xytx Xt xg e Sg\S.

The coefficient vectors of g and g’ are used in the construction
of lattice £, where x;X; is substituted for each x;. As discussed in
Section 2, we need to compute det(£) to apply the condition (3). In
our lattice construction, the diagonal elements of g and g’ are equal to
% and X f‘X;2X§3 Xi“‘X ;‘SR, respectively. So it implies
(i)s’gxs1 X2 X% X5 X5 ROR < R™

X 1 %2 43 A4 2s ’
where s, = |S|, 5 Zxklxkz B8 es \sk"’ SR |Sk \ S| and
m = |Sg|. Furthermore, we have m = fSRl =|S|+|Sg\ S| = Sg + Sg-
Hence, it can be finally reduced to

51352 353 354 355 Sg
X'XPXPX XS < XSS, a4
where 5; = Y 1 g ke s g \sk" and s, = [S]|.
We now calculate s for i = 1,2,3,4,5 and gt by the above

deduction. Based on their definitions, we have

1= 2z ok
K k2 k3 k4 k5

x) eSg\S

s s—iy s—ip—iy ip+t i3+t

XY X XXi-

i1=0i=0 i3=0 i4=0is=0

s—1 s=1=iy s=1=ij—ip iy+t i3+t

22 X XX

=0 ir=0  i3=0 i4=0is=0

$° s4t st
=Tt e T

2= DI
x}](] xkzxk3x 4x eSp\S

s S—iy s—iy—iy i+l i3+t s=1 s=1—=iy s—1—ij—iy ip+1 i+t

XY X XXX XY X X2h

i1=0iy=0 i3=0 iy=0i5=0 i1=0 i=0 i3=0 iy=0i5=0
5 4
N st $32
=+ =+ +o(sd)
60 8 6 ’
5= 2k
xkl kzx x4 x SeSp\S
s s—iy s—ij—iy ip+t i3+t s—1 s=1=iy s=1—ij—iy ip+t i3+t
aPPADNDIDILEDNDIEDIEPIPNE
i(1=0ip=0 i3=0 iy=0i5=0 i1=0 i=0 i3=l iy=01i5=0
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5 4 2
N sttt 87t 5
—+ =+ — +o(s),
60 8 6 (s)
5y = 2 ky
xkI x’zczxkzx xg SeSp\S

s s—iy s—ij—iy ip+t i3+t s—1 s=1=iy s=1=ij—iy ip+t i3+t

XY X X2i-2 Y X X2

i1=0ip=0 i3=0 iy=0i5=0 i1=0 i=0 i3=0  iy=0i5=0
—i+ﬁ+ﬁ+_t3+o(35)
120 12 4 4 ’
55 = Z ks

ki ko k3 k4 ks
XX, T xa X x T ESR\S

s s—iy s—iy—iy inHt i3+t s—1 s=1=iy s=1—=ij—iy in+t i3+t

22 X XXis-2 Y X XX

1=0iy=0 i3=0 iy=0i5=0  i1=0 ir=0  i3=0 is=0i5=0
SR L LG Y
20 127 4 T4
s—1 s=1=iy s=1—ij—iy ip+t i3+t

=)
Il

g |5|=ZZ zzl

i1=0 ir=0  i3=0 i;=0i5=0
5 4
N s7t st 5
=— 4+ —+ — +o0(s)
120 12 6 ’
s—iy s—iyj—ip ip+t i3+t

3
Il

=3y Y X3

i1=0ip=0 i3=0 iy=0i5=0

$ st

=E+E+T+O(S).

After tedious computation and taking ¢+ = zs for ¢ > 0 and omitting
lower terms o(s’), we obtain

s =8, = L(l + 107 +2022)s%,
5y =83 = 120 — 2+ 157 4+ 207%)s°, (15)
54 =85 = m(l + 107 + 307 + 307%)s°

The values of X;, X, s; and s, are substituted into the condi-
tion (14) and it gives
N%(a—p)(moﬁmrz)ﬁ N%(al+5—l)(2+151+20r2)s5
<N ﬁl()(a2+5—1)(2+15r+2072)s5 N ﬁ(1+101+3012+3013)35

(1+107+30724307%)s° (a+5)(1+10f+20r2)3

X N 240 240 < N 120

We deal with the exponents over N (eliminating the term s°) and obtain

(6 — B)(1 4+ 107 +207%) + (a + 26 — 2)2 + 157 + 207?)
+1 + 107 4+ 3072 + 307> < (« + 8)(1 + 107 + 2072).

This results in
(a+ﬂ— D(1 + 107 +207%) — 1072 - 307 @
4 + 307 + 4072 2
For known « and p, there exists an optimal 7, maximizing the right
side. By calculating the derivative with respect to r, we take the unique
positive z, satisfying

120x* + 180x> + (86 — 20a — 208)x> + (16 —8a —8f)x —a—f+1=0
Hence, the above condition on § reaches its maximal upper bound that
is

(a + = 1)(1 + 107 +2077) — 1077 — 301‘

0%
4+3010+401 2

We follow the four-step summary of the lattice-based method and
finally derive four polynomials f|, f», f3. f; separate from f under the
above analysis and condition. Additionally, f, fi, f», f3 and f, share the
common root (dy; —dyy, ky, ky, py + 41, py + q,) over the integers. Finally,
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we extract p; + ¢; and p, + ¢, which result in the factorization of N,
and N, respectively.

The running time is mainly dominated by the LLL algorithm, which
is polynomial in the maximal component of input vectors and lattice
dimension as stated in Lemma 1. The maximal component of input
vectors related to multiples of X; and X, is polynomial in N and the
lattice dimension m is polynomial in s°. Thus, the time complexity is
polynomial in N, s and the factorization works in polynomial time. []

We briefly explain how to prove Proposition 1 since it is a special
case of Proposition 2. Suppose that e, e, are of full bit-size, i.e., a =
a;+a, =14+1=2, N| and N, can be factored in polynomial time if

LB+ +107+ 2072) — 1072 — 3073
4 + 307 + 4072
where § = p; + §, and 7 > 0. If the unique positive root 7, satisfies

>

120x* + 180x3 + (46 — 208)x*> —8fx — f— 1 =0,
we obtain the maximal upper bound on § that is
(ﬂ + 1 + 1079 +2073) — 1023 — 3073
4+ 307, + 401

3.2. Two special cases

We focus on two special cases, namely given two RSA instances with
a common modulus or a common private key. The implicit-key attack
for two RSA instances with a given common modulus is presented first.

Proposition 3. Let N = pq be an RSA modulus of bit-size |, where primes
p. q are of the same bit-size 1/2. Let e, e,,d,, d, satisfy e;d; = 1 mod @(N)
and e,d, = 1 mod @(N), such that e, e, and d,, d, are of bit-size a;l, a,!
and §l, respectively. Suppose that d, and d, share ;1 MSBs and f,! LSBs.
Then N can be factored in polynomial time if
(@+p)A4+87)-3-8r—-67> ¢
o< -=+1,
4(3 +41) 2 +
where a = a; + ap, p = p; + p, and T > 0. Let
—9+ /48 +p)+9
y=—
12
that maximizes the right side of the above condition on §. By substituting z,
into the above condition, it reaches the maximal upper bound that is

V48(a+ ) +9
16 ’

88+ 17—
<

(16)

Proof. Based on the analysis of the general case, we have a new integer
polynomial for the same modulus N,

IN(X1, X0, X3,X4) = ay x| + ayXy + a3X3 + a4Xy Xy + a5X3X4 + ag.

The known and unknown variables are identical to those introduced in
Section 3.1 except for x, = x5 and N; = N, = N. Besides, the upper
bounds X; and X, are the same as (11) and (12). Concretely, we have
Xl — Nr?—/i" X2 — Na|+5—l, X3 — Na2+r3—1’ X4 — N1/2 and Xoo — NDH—(‘}'

We then build a refined lattice to discover the root of
Sn(xX1, x5, x3,x4). The procedure is similar and we skip over its detailed
construction. We show the monomials that belong to .S and Sy for two
negative integers s > 1 and 7 > 0 as follows.

i1=0,...,s—1,
ih=0,...,s=1—1iy,
x'l'xlzzx’; Z‘ eSS ey
iy=0,...,s=1—i —ip,
iy =0,...,0+iy+1.
il =0,...,s,
: ih=0,...,5s =i,
i e sy v
i3=0,...,5 =i — i,
ig =0, 0y +iy+1.
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Similarly, we calculate each s; for i = 1,2,3,4 and Sgs M based on
their definitions as follows.

s= Xk
ki ky k3 kg
XX x 0 x P ESR\S

s s—iy s—ij—ip ip+iz+t

2z

i1=0i=0 i3=0 i;=0

s—1 s=1—iy s—1—iy—iy ip+iz+t

-2 X X X

i1=0 ;=0  i3=0  iy=0

= X ok
K k7xk3 k4

x) eSp\S

s s—iy s—ij—ip ip+iz+t

=22

i1=0i7=0 i3=0 i;=0

s=1 s=1—iy s=1—ij—iy ip+iz+t

XX X X

i1=0 ;=0  i3=0 ;=0

§3 = ks
kq

ky K3 ky
XX, T x0T ESR\S

s s—ip s—ip—ip ip+iz+t s—1 s=1—iy s=1—ij—iy ip+iz+t

=X 2 XhtX 2 X X

i1=0i=0 i3=0  iy=0 i1=0 i=0 iz=0 iy=0

-

S4 S 4
= — —_— +
8 o(s™),

S4 = ky
Ky

ka k3 K4
XX, xp7x T ESR\S

[=)}

s s—iy s—iy—iy ir+iz+t s—1 s=1—iy s=1—iy—iy ip+iz+t
333 22X % 3w
i(1=0ip=0 i3=0 iy=0 i1=0 ip=0 i3=0 iy=0

4 3¢ 212

K s 4
==+ —=—+—+to0(s"),
3 4 <)
s—1 s=1=iy s=1—ij—iy ip+iz+t
=lsi=2 % ¥ X
i1=0 i=0 i3=0 ig=0
3
S st 4
=—=+—+o0(s"),
12 6 (s

s s—iy s—ij—ip ip+iz+t

nlsd=3 3 53

i1=0i=0 i3=0 i4y=0

By taking 7 = zs for = > 0, we have

sp =8, %(1 +27)s%,

Sy =83 = 21—4(3 +47)s%,

54 = 21—4(3 + 87 + 67°)st.

Substituting X, 5;, X, and s, into X' X2 XX} < X% and dealing
with the exponents over N, we obtain

3+8r+6r2

(6= )2 +47) + (a +26 — 2)(3 +47) + 5

< (a+96)2+4r).

This results in

(a+p)4+87)—3-8r—672 ¢
5 —Z 41
< 3G +47) 2t

By calculating the derivative concerning z, the right side can be maxi-
mized at

9+ yABa+pH+9

o= 2
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and plugging this optimized 7, in the above inequality for § gives

V48(a+ p)+9
16 ’

We follow the four-step summary of the lattice-based method and
finally obtain three polynomials fi, f,, f; apart from f, under the
above analysis and condition. The polynomials share the common root
(dy —dyy, ky, ky, p+ q) over the integers. Finally, p + ¢ is extracted and
directly leads to the factorization of N.

The running time is mainly dominated by the LLL algorithm, which
is polynomial in the maximal component of input vectors and lattice
dimension as stated in Lemma 1. The maximal component of input
vectors related to multiples of X; and X, is polynomial in N and the
lattice dimension m is polynomial in s*. Thus, the time complexity is
polynomial in N, s and the factorization works in polynomial time. []

86 + 17 —
<

The implicit-key attack for two RSA instances with a shared private
key is then presented.

Proposition 4. Let N, = p,q, and N, = p,q, be two distinct RSA moduli
of the same bit-size I, where primes p,, q,, p,, g, are of the same bit-size I /2.
Let e}, ey, d satisfy e;d = 1 mod @(N,) and e,d = 1 mod ¢(N,), such that
e, e, and d are of bit-size a1, a,! and &1, respectively. Then N, and N,
can be factored in polynomial time if

3—a+ (16 —4a)r + 672 — 127
3+ 167 + 1272
where a = a; +a, and t > 0 Let 7, denote the unique positive = that satisfies

o< , a7)

36x* +96x° + (51 — 12a)x> + (9 — 6a)x — a = 0. @1s)
Hence, the above condition on & reaches its maximal upper bound that is
3—a+ (16 - 4a)7y + 672 — 1277

34167, + 1277 ’

6 <

Proof. Based on the analysis of the general case, we have a new integer
polynomial for the same private key d,

fa(X0, X3, X4, X5) = ap Xy + azx3 + ayxyx4 + asx3x5 + ag.

The known and unknown variables are identical to those introduced in
Section 3.1 except for x; = 0. Besides, the upper bounds X; and X, are
the same as (11) and (12). Thus, we have X, = N©+5-1 X, = N@+5-1,
X, =Xs=N'"2 and X, = N**.

We then build another refined lattice to find the root of
Sfa(x9, X3, x4, x5). We show the monomials that belong to S and .S for
two negative integers s > 1 and ¢ > 0 as follows and skip over its
detailed construction as well.

ir=0,...
i3=0,...
iy =0,...,i)+1,

,s—1,

,s—1—1iy,

ip i3 _ig 15
Xy X3 X, X esSe

is=0,...,i5+1.
ih=0,...,s,

iz =0,...
iy =0, +1,

,s—i2,

l') 13 iy 15
Xy X3 Xy X5 € Sgp &

is=0,...,i3+1.
Similarly, we calculate each s; for i =2,3,4,5 and Sg,m based on their
definitions as follows.
Sy = Z ky
xk2 k;x x SeSp\S

s S—ip i+t i3+t s—1 s=1—iy ip+t i3+t

IPIPIPILEDHPHPIPHE

ip=0i3=0i4=0i5=0 ir=0 i3=0 iy=0i5=0
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M
2

[

2,2
t
+ —52 + 0(54),

—_
(3]

53 = ks
ky k3 ky ks
x,7x.7x, x7 €SR\S
s s—ip ip+t i3+t s—1 s=1=ip ip+t iz+t
IDIDIDIED NI IPNE

ir=0i3=0i4=0i5=0 =0 i3=0 iy=0i5=0

w

2.2
57[ + % + 0(54),
54 = Z ky

ky k3 kg k
2 egps

+

—| o
[N B

s S—ip i+t i3+t s—1 s=1—ip ip+t iz+t

=X XX X=X XX

i7=0i3=0i,=0is=0 ;=0 i3=0 i;=0i5=0

54 35212
—ﬁ‘l’ + 2 +7+0(S),

st
3
55 = z ks

kp k3 k4
X,7 X7 x, x5 SeSg\S

s S—ip i+t i3+t s—1 s=1—=iy ip+t i3+t

2PN DN
i=0i3=0i4=0is=0 =0 i3=0 i;=0i5=0

s 3522 s
+ 7 + O(S ),

—+ =+
24" 3 4
s—1 s=1—ip ip+t iz+t

s=ISl=2 X X N1

=0 i3=0 iy=0i5=0

A
3

s s—iy ip+t izHt

nelsd=Y 3 5 3

i=0i3=0i4=0i5=0

242

s 4
+ = +o(s"),

5~ o™

[\

st s22 4
_ﬁ-‘— 3 +T+0(S)

By taking 7 = rs for = > 0, we have

Sg = %(1 + 8z + 1207,

S, =583 = %(1 + 67 + 67°)s%,
54=55= %(1 + 87+ 1877 + 127%)s*.

Substituting X;, s;, X, and s, into X;ZX;’“XfX;S < X and dealing

with the exponents over N, we obtain
2@ +26 —2)(1+ 67 +672) + 1 + 87 + 1872 + 1277 < (a + 8)(1 + 87 + 1272).

It leads to
3—a+(16—4a)r + 672 — 1273
3+ 167 + 1272
For known «, there exists an optimal 7, maximizing the right side. By

calculating the derivative with respect to 7, 7, is the unique positive
root satisfying

o<

36x* +96x + (51 — 12a)x% + (9 — 6a)x — & = 0.
Hence, the above condition on 6 reaches its maximal upper bound that
is

3 —a+ (16 — 4a)zy + 672 — 1273
6 < 0 0

3+ 167y + 1277

We follow the four-step summary of the lattice-based method and
finally obtain three polynomials f|, f,, f; apart from f, under the
above analysis and condition. The polynomials share the common root
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Table 1
The comparison of our results and previous ones on the insecure bound of &.
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Common modulus N

Common private key d

Previous result [24, Theorem 1]? 5 < %ﬂ, + liz Previous result [26, Formula (4.3)]" 5 < % —logy 6
Ours (f =, + ) § < TR Ours (r, ~ 0.229) 5 <0411

aThe original bound is iﬁ* + %5 - 4% <0 for d;, dy < N° and |d, — d,| < N”". For clear comparison, we should replace f* with § — g, since |d, —d,| < N°~% in our interpretation

and hence we obtain 6 < %ﬂl + ]iz

bThe original bound is § < & — ——
27 20+

—logy 6, where r is the number of given RSA instances and N, is the rth RSA modulus. For clear comparison, we should replace r with 2

since two RSA instances are considered in our attack and N is used to denote N, as explained above. Hence, we obtain 6 < % —logy 6.

d, of bit-size delta*|

‘ dgo: betaq*l dq1: gammayq*l

dqn: gammay*l don: betan+1"l|

H_/ . . S

other middle bits

shared MSBs  different middle bits ~ shared middle bits

I\ A A e

........ L
Y A
shared middle bits  different middle bits ~ shared LSBs
........ J J

dgo: betaq*l dzq: gammaq*l

doq: betaz*l T

dan: gammap*l

J don.1: betap*l don: betan+1*l|

d, of bit-size delta*l

Fig. 2. The illustration of two correlated private keys with implicit information in the complex case.

(k1. ko, py + 41, py + q,) over the integers. Finally, we extract p; + ¢, and
P> + 45, which result in the factorization of N| and N, respectively.
The running time is mainly dominated by the LLL algorithm, which
is polynomial in the maximal component of input vectors and lattice
dimension as stated in Lemma 1. The maximal component of input
vectors related to multiples of X; and X, is polynomial in N and the
lattice dimension m is polynomial in s*. Thus, the time complexity is
polynomial in N, s and the factorization works in polynomial time. []

We compare our theoretical results with previous ones for full bit-
size public exponents, i.e., @) = a, = 1 and hence a = 2. The comparison
is showed in Table 1. It is clear that our results of two special cases
are superior since we use more implicit information along with an
improved approach.

4. Extended implicit-key attack

We generalize the solving strategy for the basic case when analyzing
one block in the middle to the complex case when analyzing n discrete
middle blocks. Suppose that the private keys d;, and d, are of the
same bit-size /. Moreover, they share g,/ MSBs, §,,,/ LSBs and other
middle blocks of g1, ..., p,! bits leaving n different middle blocks of
711,721, ...y, bits behind. The detailed illustration is showed in Fig. 2.
To be specific, we have

d, = d002(5*ﬁ1)1 + d]12(5*(ﬁ1 R D)L dops

d, = d002(5*ﬂ1)1 + d212(5*(ﬁ1+71))1 + o+ dy, 9)

Moreover, we have d) —d; = Y_ (dy — d;)2"', where , = & —
Zj‘:l(ﬂj +7;) and d,;,dy; denote the ith matching different bit blocks.
We substitute d, —d, into the RSA Eq. (8) involving two RSA instances.
Hence, our aim is to find the root (dy; — dy,...,dy, — d},. ki, ko, py +
q1. P> + q») of the integer polynomial

n+2 n+4
(X1, X0, 0o X ) = Z a;x; + Z a;X;_oX; + Q5. (20)

i=1 i=n+3

Similar to the analysis in Section 3.1, we list all the unknown and
known variables below.

I
a; =eje2M’, _
xp =dy —dyy,

1
a, = ejey2Mm’, B
Xp = d2n - dln’

Jann1 = er(Ny + 1),

1 Xnt1 = ks
Ay = —e;(Ny + 1), .k
n+2 — "2
Ant3 = —€2»
Xp43 =Pyt 415
Aniq = €15

Xp4a = P2+ G-

nys = €2~ €
We primarily consider arbitrary public exponents ¢, = N and e, =
N®. The upper bounds X; and X, are fixed as follows.

Xl = NV', X2 = Nfz’ -, Xn =N7n’
Xn+l - Nal+5—], Xn+2 — Na2+5—1’ (21)
X3 = Xppu = N2, X = N =) + .

We adapt the extended Jochemsz-May strategy and define the
following monomial sets

— i I3 tnes nedtined o g s—l}
S= X Xs Xotd Dxp xS
05jn+3sjn+45t
and
— i ing3tine3 invatined . 0 intd s
Sk = U {x) X LX) X E S

0<jnt3:Jn+a<t

The parameters s and ¢ are two non-negative integers satisfying s > 1
and ¢+ > 0, which are used to control the number of elements in
the monomial sets S and S and also control the dimension of the
constructed lattice.
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By generalizing the relation between a monomial and its indices, we

know that the monomial element x;‘ x'; x;’:‘: € S relates to

i1=0,...,s—1,

iy=0,...,s=1—1ip,

Qi1 =0, s =1 =iy — =iy,

I =0,y = L =iy = =iy,

Ing3 = 0,y +1,

fppa = 0,y lyyn +1.

and x"x‘2 x4 e S relates to

2 n+4
i1=0,....,s,
ih=0,...,5s =1,

by =0, ,8—ip — e =i

ne

I =0,y 8 =iy = =iy,
b3 =0, 0,y +1,
fpps =0y eeyiyyn +1.
The constructions of g; 4. . &, and gk oy OT€ straightforward

and similar to that in Section 3.1. We prov1dze the condition for finding
(n+3) many polynomials fi, f5, ..., f,,3 sharing the common root over
the integers. That is

n+4
S S,
[1x7 <x&, (22)
i=1
where s; = leflu-x’;jfes,{\s k; and s, = |S].
Note that s, s,, ..., s, are equal based on the structure of the original
polynomial (20). Moreover, we also know s,,; = s5,,, and s5,,3 =

S,4+4- Similar to the index calculation used in Appendix of [25], we
conduct tedious computation of sy, s,,...,s,,4 and Sg,m based on their
definitions as follows.

Sl = s2 = eee = sn
- Z ki
Ky Kn+a
XX,y ESR\S
s—iy S—ip—see—iy S=ip = —lyqy by +H i+t
-3y ¥ % IRt
i1=0i=0 iny1=0 in42=0  ipy3=0iy44=0
s—1 s=1-i; s=1—ij—eemiy S=1=ij=seemipyy ipp+t ippo+t
XX X ) IRL
(=0 =0 in41=0 in42=0 in43=0ip44=0
S 2(n + 4"+ (n+ 3)(n + 4)s"242 +o(s"™)
= o(s
(n+4)! ’
Sn+1 = Sn2
= 2 kn+l
ki Kn+a
Xy X,y ESR\S
s s—ip S—ip—see—iy S=ip = —ipqy b+ Do+t
=2X- X X 2w
i1=0i=0 iny1=0 in42=0  ip3=0iy44=0

s—1 s—=1-i; s=l—iy—eemipy S=1=ij—-somipyy ipp+t ippo+t

XX X X X X
(=0 =0 in41=0 in42=0 in43=0ip44=0
25" 4 3(n+ 45"+ (n 4 3)(n + Hs"4?

(n+4)! + o,

Sn+3 = Sn+4
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= 2 kn+3

ki ks
X ESR\S

s s—ip S—ip—see—iy S=iy = —lyqy b+ iygp+t

=X Y- X X X X

i1=0i=0 iny1=0 in42=0  ip3=0iy44=0
s—1 s—1-i; s=l—iy—eeemiy S=1=ij =iy | Iy ipyo+t
-2 X X ) 2 ines
i1=0 ir=0 in41=0 int2=0 in43=0ip44=0

_ 25" 4 4(n+ 4)s"3t + 3(n + 3)(n + 4)s" 242

2(n+4)!
2(n+3)(n+ s
(n+2)(n+3)(n+4)s +o(s™,
2(n+4)!
IS
s—1 s=1-iy S=1—iy—eemiy S=l=iy=semipyy iy +t ippp+t
I D R i
i1=0 ir=0 int1=0 ing2=0  ipy3=0ip14=0
n+4 n+3 n+242
_s +2(n+4)s" Pt + (n+ 3)(n + 4)s"4t +o(s™),
(n+4)!
m = |Sg|
s s—ip S—ip—see—iy S=ip = —lyqy B+ Do+t
=2X X X 2!
i1=0i=0 ing1=0 in42=0  ip3=0iy4=0
S 4 2(n + 4)s" 3+ (n 4 3)(n + 4)s"212 +o(s™),
(n+4)!
By taking 7 = zs for = > 0, we obtain
Sp=sy = =s5,=95,
2
_ 1+2n+dHr+m+3)(n+ 4t S,,+4’ (23)
(n+4)!

243447+ (n+3)(n+4)r2 e

Snt1 = Spp2 = (}’l +4)' ) (24)
_ 244+ DT 43+ 3+ D
Sn43 = Sppa = 2(n+4), s
3
n+2)(n+3)n+dr s 25)
2(n +4)!

Substituting X, ..., X, 4. Xs and sy,....s,44,s, into the condi-
tion (22) and dealing with the exponents over N, we obtain
G-pPpA+2mn+dHr+m+3)n+ 4)12)

Ha+26 —2)2 +3(n+ 47+ (n+ 3)(n+4)7?)
+142(n+4)7 + %(n +3)(n+4* + %(n +2)(n+3)n+ 43
<(@+8)(1 +2(n+ 47+ (n+3)(n + 4)7?),

where « = ) + a, and § = Y7, §;. By denoting

(@+p-DA+2n+47+ (n+3)(n+4)73)
2243+ M7+ (n+3)(n +4)72)

n+3)n+H2+n+2)n+3)n+dH3  «

T A3+ M+ () + DY) 2

}‘a,ﬂ,n(f) =

+1, (26)

it further reduces to § < A pn(T) for given «a, f,n and 7 > 0.

Definition 1. Let d(z) be the derivative of A pn(T) with respect to
for known a, 8, n. It is defined as

02q.p.n(7)
d(r) = 0—1'

+((11 =20 = 28)(n + 3)(n + 4) — 12(n + 3))>
+(8 —4a —4P)n+3)r = 2(a+ - 1).

= (n+2)(n+ 32+ 47+ 6(n +2)(n + 3)(n + 47>
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Table 2
The numerical examples with particular parameters of RSA instances.
n a, a, a B b B3 A B Ty o
0.75 1 1.75 0.05 0.05 - - 0.1 0.102 < 0.360
1 1 2 0.05 0.05 - - 0.1 0.131 <0311
1 1 1 2 0.1 0.15 - - 0.25 0.148 <0.357
1 1 2 0.15 0.15 - - 0.3 0.153 <0.373
1 1.25 2.25 0.15 0.15 - - 0.3 0.181 < 0.328
0.75 1 1.75 0.02 0.02 0.02 - 0.06 0.077 <0.347
1 1 2 0.02 0.02 0.02 - 0.06 0.099 < 0.297
2 1 1 2 0.04 0.05 0.06 - 0.15 0.107 <0.325
1 2 0.1 0.1 0.1 - 0.3 0.120 <0.371
1 1.25 2.25 0.1 0.1 0.1 - 0.3 0.141 <0.326
0.75 1 1.75 0.01 0.02 0.02 0.03 0.08 0.065 <0352
1 1 2 0.01 0.02 0.02 0.03 0.08 0.083 <0.302
3 1 1 2 0.03 0.03 0.04 0.04 0.14 0.088 <0321
1 1 2 0.07 0.07 0.07 0.1 0.31 0.100 <0373
1 1.25 2.25 0.07 0.07 0.07 0.1 0.31 0.117 <0.327

In order to maximize A, ;,(7), we denote by 7, the unique positive
root of d(zr) for given a,p,n, namely d(zy) = 0 with real 7, > 0.
Hence, 4,5 ,(7) reaches its maximum when taking 7 = 7, which can
be calculated using numerical methods.

Similarly, we follow the four-step summary of the lattice-based
method and finally obtain sufficient polynomials apart from the integer
polynomial (20) under the above analysis and condition. All these
polynomials share the common root (dy; — dy, ..., dy, — dy,. ki, ky, py +
q1. P> +q,) over the integers. Thus, we extract p, +¢, and p, + ¢,, which
lead to the factorization of N; and N,, respectively.

The running time is mainly dominated by the LLL algorithm, which
is polynomial in the maximal component of input vectors and lattice
dimension as stated in Lemma 1. The maximal component of input
vectors related to multiples of X; and X, is polynomial in N and the
lattice dimension m is polynomial in s"+*. Thus, the time complexity is
polynomial in N(= 2/) and s”. The factorization works in time that is
polynomial in 2/ but exponential in n. The attack result is stated below.

Proposition 5. Let N| = p;q; and N, = p,q, be two distinct RSA moduli
of the same bit-size I, where primes p,, q,, p,. q, are of the same bit-size 1 /2.
Let ey, e,,d,,d, satisfy e;d, =1 mod @(N,) and e,d, = 1 mod ¢(N,), such
that e, e, and d,, d, are of bit-size a,l, a,! and 61, respectively. Suppose
that d, and d, share p;! MSBs, p,, ! LSBs and other middle blocks of
bol, ..., B,l bits, leaving n many middle blocks of y,l,...,y,! bits behind.
Then N, and N, can be factored if

8 < Ay pu(®); @27)

where a« = a; +ay, f = Y7 f and = > 0. Let 7, be the unique positive root
of d(z). Hence, the above condition on é reaches its maximal upper bound
that is

6 < Ag pa(70)-
The running time is polynomial in 2! but exponential in n.

Revisiting the basic case of n =
following bound

(@+p-DUA+10c+207%) 2072 + 6073 _%
2(2 4 157 + 2072) 42+ 157 +2072) 2

This bound is identical to that presented in (6), which means our
extended implicit-key attack is a natural generalization of the basic one.

Although we analyze the situation when n discrete blocks in the
middle of d,,d, are different, this attack may be inefficient in practice
since the lattice dimension becomes much larger and the time consump-
tion increase higher as n gets greater. We provide several numerical
examples with particular parameters of RSA instances in Table 2 for
intuitive display and understanding.

The implicit-key attacks might be used by hackers or cybercriminals
who have obtained partial access to the RSA backdoor key generation

1, we immediately have the

5 < i
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through means such as data manipulation or social engineering. To be
specific, two RSA backdoor private keys d, and d, are generated with
several predetermined implicit relations under the control of hackers or
cybercriminals. They can use the implicit information known about d,
and d,, i.e., given assumptions about the amounts of shared MSBs, LSBs
or middle bits to factor the private keys and gain complete access to the
encrypted communication. This could potentially compromise sensitive
information, such as financial transactions or personal information, and
cause significant harm to the individuals or groups involved.

5. Validation experiments

Before providing the experimental results, we give a simplified strat-
egy for implementing the proposed implicit-key attacks. The asymptotic
bounds stated in Proposition 2 are reached by z = t/s < 0.2 according
to our numerical calculation. The value of s should be fixed at least 6
for + = 1. The resulting lattice dimension m = 966 seems inefficient to
perform our simulated experiments. Therefore, our simplified strategy
is based on taking ¢ = 0 for implementation, which makes the lattice
construction easier whereas the corresponding upper bound on § is
lower. In the following simulated experiments, we mainly choose 1 = 0
(i.e. = = 0) for efficient validation. The simulated numerical experi-
ments are meant to demonstrate the practical feasibility and efficiency
of the proposed attacks under the corresponding viable conditions.

We give experimental findings to demonstrate the effectiveness of
the aforementioned attacks according to Proposition 2, Proposition 3,
Proposition 4 and Proposition 5, respectively. The experiments were
conducted under Windows 10 running on a computer with Intel Core
i5-10500 CPU 3.10 GHz and 8 GB RAM. We utilized the LLL algorithm
and the Grobner basis computation available in SageMath [36]. The
numbers used in each experiment were uniformly and randomly pro-
duced. We searched for the best experimental results, i.e., the highest 6
values so that we could conduct a successful attack on generated RSA
instances.

We were able to gather significantly more polynomials that met our
solvable requirements during the experiments. In other words, we got
more sufficiently short vectors than we wanted after executing the LLL
algorithm. Therefore, using the Grobner basis computation, we could
find the common root and then factor the given RSA moduli. We would
like to point out that although the practical performance of the LLL
algorithm is better than expected, the theoretical asymptotic bounds
of 6 are slightly higher than the experimental ones. We show a toy
numerical example to provide a clear understanding of our proposed
attacks and the attack performance.

Example 1. In order to check the correctness and validity of gener-
alized implicit-key attacks on RSA, i.e., Proposition 5, we choose the
following specific parameters and generate the test example.
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1. Randomly generate two 128-bit prime numbers p;, ¢; and the
modulus N, = p,q, (that implies / = 256);

2. Randomly generate two 128-bit prime numbers p,, ¢, and the
modulus N, = p,q, (that implies / = 256);

3. Randomly generate two 75-bit private keys d;, and d, sharing
10-bit MSBs, 15-bit LSBs and one middle block of 25 bits, leaving
two middle blocks of 12 and 13 bits behind;

4. Compute the public keys e, and e, based on above parameters.

The values of the numerical example are as follows.

N, =7707446030876135702188775813519855146317\
7926486674652585577153046769417463957,

N, = 6820857231756617967050874992435155095741\
3217051127796887822196933203004728293,

e; = 6588164357981076278760647954202272658145\
3538164718606821351701327168166148501,

e, = 4644295477039716119467296971316754493630\
0109718417539401882425858344035554889.

To apply generalized implicit-key attack proposed in Proposition 5,
we choose s = 3, + = 0, which means that we need to apply the LLL
algorithm to a lattice £ with dimension m = 84. After running for
about 8 seconds, the approximately shortest basis vectors that meet
the solvable condition are obtained. The system of integer equations
to be solved is then derived by transforming reduced vectors into
integer polynomials. We finally solve it by applying the Grobner basis
computation in less than one second and recover the unknown variables
as follows.

x; = 1220,

x, = 360,

x3 = 23451873454186264133673,

x4 = 18688670276834104797536,

x5 = 564604791267787730189712331604172673802,
X = 523037669003405350904074688719600239994.

Thus, we know the values of p; + ¢; and p, + ¢, through x5 and x,.

p1 + g1 =564604791267787730189712331604172673802,
P> + g, = 523037669003405350904074688719600239994.

Eventually, we extract p,, q;, p, and ¢, based on p,; +¢;, p, +¢,, N; and
N,.

p1 = 231114679608716682316576127775596020963,
q; =333490111659071047873136203828576652839,
P, = 247971566084683177310935343410715903843,
g, = 275066102918722173593139345308884336151.

One may check that Ny = p;¢; and N, = p,q, do hold, so the
generalized implicit-key attack proposed in Proposition 5 successfully
outputs the factorization of N; and N,.

5.1. Experimental results for Proposition 2

For our basic implicit-key attack, we generated two /-bit (i.e., / =
1024, 2048, 3072) RSA moduli and two public exponents (denoted by
aj,ay and @ = a; + a,) appeared in the experiments were nearly of
full bit-size. The implicit information of shared MSBs and LSBs were
indicated by B,,$, and g = B, + f,. Because the lattice construction
was fixed by s = 3, t = 0, we needed to reduce a 56-dimension lattice.
Table 3 displays the comparison of experimental insecure bounds. The
theoretical upper bound on § for specific parameters in our simplified
strategy is provided by the §,-column. The experimental upper bound
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on § for specific parameters in our computer experiments is provided by
the 6,-column. The AR-column indicates the achieving rate calculated
as 6,/6,, which compares our experimental bound with the theoretical
one. We use m to represent the matching lattice dimension, and Time
to denote the running time (measured in seconds).

We gathered enough polynomials with a common root over the
integers for each experiment. More polynomials were added to the
Grobner basis computation since the first four might be insufficient
for extracting the common root. Finally, we were able to determine
the correct values for p; + ¢q; and p, + ¢,, which factorized N, and
N,, respectively. We established the value of x; before determining the
solution to the other variables if the Grobner basis computation did not
immediately produce the desired root. According to Table 3, m = 56 is
sufficient since the experimental bound is so close to the theoretical
one, which is based on the observation that the average achieving rate
is 98.8%.

5.2. Experimental results for Proposition 3

For our particular implicit-key attack against RSA with shared
modulus N and d,,d, having some common MSBs and LSBs, we gen-
erated an /-bit (i.e., / = 1024, 2048, 3072) RSA modulus and two
public exponents (denoted by a,a, and a = a; + a,) appeared in the
experiments were nearly of full bit-size. The implicit information of
shared MSBs and LSBs were indicated by f,, , and g = j, + f5,. Because
the lattice construction was fixed by s = 2,3,4 and ¢ = 0, we needed
to reduce lattices whose dimensions are 20, 50 and 105, respectively.
Table 4 displays the comparison of experimental insecure bounds. The
theoretical upper bound on § for specific parameters in our simplified
strategy is provided by the §,-column. The experimental upper bound
on § for specific parameters in our computer experiments is provided by
the §,-column. The AR-column indicates the achieving rate calculated
as 6,/6,, which compares our experimental bound with the theoretical
one. We use m to represent the matching lattice dimension, and Time
to denote the running time (measured in seconds).

We gathered enough polynomials with a common root over the
integers for each experiment. More polynomials were added to the
Grobner basis computation since the first three might be insufficient for
extracting the common root. Finally, we were able to obtain the correct
values for p; +¢; and p, +g,, which factorized N; and N,, respectively.

In Table 4, the achieving rate estimates the attack performance in
our lattice settings with different dimensions. The respective average
achieving rates for m = 20, 50, 105 are 76.5%, 82.8%, 86.3%, which
implies that a lattice with higher dimension indeed leads to better
attack performance. Thus, we see that the experimental bound is a
few bits away from the theoretical one since the lattice dimension is
limited. The lattice dimension is a crucial factor in our attacks and it
has a significant impact on the attack performance since we assume a
large lattice dimension in the theoretical analysis.

5.3. Experimental results for Proposition 4

For our special implicit-key attack on RSA with the common pri-
vate key d and N, N, of the same bit-size /, we generated two /-bit
(i.e., I = 1024, 2048, 3072) RSA moduli and two public exponents
(denoted by «;,a, and a« = a; + a,) appeared in the experiments were
nearly of full bit-size. We omitted p, and f, as there is no implicit
information about private keys. Moreover, we applied various lattice
constructions indicated by s and ¢ = zs. Table 5 displays the comparison
of the insecure bounds. The theoretical upper bound on § for specific
parameters in our simplified strategy is provided by the §,-column. The
experimental upper bound on § for specific parameters in our computer
experiments is provided by the §,-column. The AR-column indicates the
achieving rate calculated as §,/6,, which compares our experimental
bound with the theoretical one. We use m to represent the matching
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Table 3

The comparison of theoretical and experimental results on é for Proposition 2.
! a a, a B b, B 5, 3, AR m Time
1024 0.998 0.999 1.997 0.010 0.010 0.020 0.255 0.252 98.8% 56 53.463s
1024 1.000 0.998 1.998 0.040 0.040 0.080 0.270 0.267 98.8% 56 54.895s
1024 0.999 0.998 1.997 0.060 0.100 0.160 0.290 0.287 98.9% 56 56.475s
1024 0.997 0.999 1.996 0.100 0.140 0.240 0.310 0.308 99.3% 56 47.419s
1024 0.999 0.999 1.998 0.156 0.151 0.307 0.327 0.325 99.3% 56 37.093s
2048 0.999 0.999 1.998 0.012 0.015 0.027 0.257 0.253 98.4% 56 218.083s
2048 1.000 0.999 1.999 0.061 0.100 0.161 0.290 0.286 98.6% 56 248.810s
2048 0.999 0.999 1.998 0.156 0.151 0.307 0.327 0.324 99.0% 56 169.537 s
3072 1.000 1.000 2.000 0.012 0.015 0.027 0.257 0.253 98.4% 56 520.627s
3072 1.000 1.000 2.000 0.100 0.141 0.241 0.310 0.305 98.3% 56 586.772s
3072 0.999 1.000 1.999 0.149 0.150 0.299 0.325 0.322 99.0% 56 509.864 s

Table 4

The comparison of theoretical and experimental results on & for Proposition 3.
li a , a b ' p 8, 8, AR m Time
1024 0.998 0.999 1.997 0.015 0.012 0.027 0.425 0.363 85.4% 50 21.412s
1024 0.998 1.000 1.998 0.049 0.068 0.117 0.456 0.382 83.7% 50 21.319s
1024 0.997 0.999 1.996 0.088 0.088 0.176 0.475 0.393 82.7% 50 20.843s
1024 0.998 0.999 1.997 0.098 0.117 0.215 0.488 0.399 81.7% 50 21.684s
1024 1.000 1.000 2.000 0.146 0.176 0.322 0.524 0.422 80.5% 50 23.654s
2048 1.000 1.000 2.000 0.044 0.051 0.095 0.448 0.387 86.3% 105 3578.821s
2048 0.999 0.999 1.998 0.098 0.117 0.215 0.488 0.425 87.0% 105 3787.419s
2048 1.000 0.999 1.999 0.146 0.176 0.322 0.524 0.449 85.6% 105 4016.093 s
3072 0.999 0.998 1.997 0.044 0.051 0.095 0.448 0.358 79.9% 20 4360s
3072 1.000 0.999 1.999 0.098 0.117 0.215 0.488 0.371 76.0% 20 4.662s
3072 0.998 0.999 1.997 0.146 0.176 0.322 0.524 0.386 73.6% 20 4.859s

Table 5

The comparison of theoretical and experimental results on & for Proposition 4.
! a a a 8 S, AR s t T m Time
1024 0.999 0.999 1.998 0.334 0.330 98.8% 2 0 0 15 0.429s
1024 0.999 0.997 1.996 0.335 0.331 98.8% 3 0 0 35 8.073s
1024 0.998 0.997 1.995 0.358 0.333 93.0% 2 1 0.500 41 9.567s
1024 0.996 0.996 1.992 0.336 0.332 98.8% 4 0 0 70 157.614s
1024 1.000 0.998 1.998 0.403 0.354 87.8% 3 1 0.333 85 276.154s
2048 1.000 0.998 1.998 0.329 0.324 98.4% 3 0 0 35 30.004 s
2048 1.000 1.000 2.000 0.357 0.334 93.5% 2 1 0.500 41 35.810s
2048 1.000 1.000 2.000 0.402 0.356 88.5% 3 1 0.333 85 745.443 s
3072 1.000 1.000 2.000 0.333 0.331 99.3% 2 0 0 15 2.614s
3072 1.000 0.999 1.999 0.357 0.333 93.2% 2 1 0.500 41 65.679s
3072 1.000 0.999 1.999 0.402 0.356 88.5% 3 1 0.333 85 1644.579s

lattice dimension, which is determined by s, t and . We use Time to
denote the running time (measured in seconds).

We gathered enough polynomials with a common root over the
integers for each experiment. More polynomials were added to the
Grobner basis computation since the first three might be insufficient
for extracting the common root. Finally, we were able to obtain the
correct values of p + ¢, which directly led to factorization of N. From
Table 5, we observe that the experimental results get higher when the
lattice dimension increases. Additionally, the average achieving rate is
98.8% for + = 0 but it is 90.7% for r = 1. This phenomenon implies
that we need greater s for non-zero ¢ in order to achieve better attack
performance.

5.4. Experimental results for Proposition 5

For our extended implicit-key attack when given n = 2 different bit
blocks in the middle of the private keys, we generated two /-bit (i.e., I =
1024, 2048, 3072) RSA moduli and two public exponents (denoted by
ay,ay and @ = a; + a,) appeared in the experiments were nearly of full
bit-size. The implicit information of respective shared MSBs, middle bits
and LSBs were indicated by §,,5,,.8; and f = B, + p, + p;. Because
the lattice construction was fixed by s 3, t = 0, we needed to
reduce an 84-dimension lattice. Table 6 displays the comparison of
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experimental insecure bounds. The theoretical upper bound on § for
specific parameters in our simplified strategy is provided by the §,-
column. The experimental one for specific parameters in our computer
experiments is provided by the §,-column. The AR-column indicates the
achieving rate calculated as §,/6,, which compares our experimental
bound with the theoretical one. We use m to represent the matching
lattice dimension, and Time to denote the running time (measured in
seconds).

We gathered enough polynomials with a common root over the
integers for each experiment. More polynomials were added to the
Grobner basis computation since the first three might be insufficient for
extracting the common root. Finally, we were able to obtain the correct
values for p; +¢, and p, +¢,, which factorized N; and N,, respectively.
We established the value of x; before determining the solution to the
other variables if the Grobner basis computation did not immediately
produce the desired root. According to Table 6, m = 84 is sufficient
since the experimental bound is so close to the theoretical one, which
is based on the observation that the average achieving rate is 98.3%.

6. Conclusion

In this study, we review a novel RSA attack scenario with implicitly
correlated private keys and make further extensions. Our goal is to
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Table 6

The comparison of theoretical and experimental results on é for Proposition 5.
! a a, a B 'S B3 B 5, 3, AR m Time
1024 1.000 0.997 1.997 0.010 0.010 0.020 0.040 0.260 0.256 98.4% 84 473.531s
1024 0.999 0.999 1.998 0.049 0.049 0.049 0.147 0.287 0.283 98.6% 84 352.497s
1024 0.999 0.999 1.998 0.039 0.059 0.098 0.196 0.299 0.293 97.9% 84 337.486s
1024 1.000 0.999 1.999 0.078 0.098 0.078 0.254 0.314 0.311 99.0% 84 248.021s
1024 0.999 1.000 1.999 0.127 0.107 0.059 0.293 0.323 0.320 99.0% 84 186.509 s
2048 1.000 0.998 1.998 0.039 0.098 0.059 0.196 0.299 0.293 97.9% 84 1653.496 s
2048 0.999 0.999 1.998 0.078 0.098 0.078 0.254 0.314 0.310 98.7% 84 1417.193 s
2048 0.999 1.000 1.999 0.127 0.107 0.059 0.293 0.323 0.319 98.7% 84 1037.386 s
3072 0.999 0.998 1.997 0.039 0.098 0.059 0.196 0.299 0.291 97.3% 84 3179.607 s
3072 0.999 0.999 1.998 0.078 0.098 0.078 0.254 0.314 0.308 98.0% 84 2756.840's
3072 1.000 0.999 1.999 0.127 0.107 0.059 0.293 0.323 0.317 98.1% 84 2147.563 s

factor given RSA moduli using implicit knowledge of the private keys
that is already known. Such implicit knowledge specifically alludes
to the known numbers of unknown common bits distributed among
unknown correlated keys. With the help of the lattice-based method,
which is adapted for solving integer polynomial equations, we present
basic and extended implicit-key attacks.

The validity of our proposed attacks is verified and we reveal the
vulnerability of RSA using implicitly correlated keys. Moreover, our
work covers two special cases of a common modulus or a common
private key. The corresponding results are stronger than previous ones.
The experiments confirm the correctness and efficiency of the proposed
attacks. We are able to launch a successful implicit-key attack and
factor given RSA moduli in a matter of seconds.
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