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This paper focuses on the RSA-polynomial problem, a cryptographic hard problem that has been 
recently proposed and studied in, along with its various applications. We revisit this problem 
and conduct a refined analysis to address an ambiguous condition that was previously introduced 
in the context of RSA-polynomial based semiprime factorization. By deriving an accurate attack 
condition, we are able to identify weak cases of the RSA-polynomial problem and expand the 
vulnerable bound. To facilitate this, we propose two optimized factoring attacks that leverage 
improved lattice-based theorems for solving bivariate integer polynomials of a specific form. 
The validity and effectiveness of our proposed factoring attacks are verified through both 
theoretical analysis and experimental results. Additionally, we examine the RSA-polynomial based 
commitment scheme and identify deficiencies that compromise its reliability. To address the 
limitations, we propose enhancements to the commitment phase of the scheme.

1. Introduction

Recently, Bagherpour [1] introduced the RSA-polynomial problem, a new cryptographic challenge related to RSA (Rivest-Shamir-

Adleman) [2]. The author’s demonstration established the equivalence in difficulty between solving the RSA-polynomial problem 
and solving the factoring problem. Moreover, the author presented a methodology for factoring semiprimes by leveraging the RSA-

polynomial problem alongside lattice basis reduction techniques. Additionally, a novel commitment scheme based on the RSA-

polynomial problem was introduced. The proposed commitment scheme surpasses previous schemes in terms of performance and 
eliminates the need for group exponentiation. Specifically, the computational cost of the RSA-polynomial based commitment scheme 
is lower compared to well-known commitment schemes such as [3–5].

The RSA-polynomial problem, as introduced in [1], is based on bivariate integer polynomials of a specific form, defined as follows.

Definition 1 ([1]). Suppose 𝑒0, 𝑒1 and 𝑒2 are arbitrary integers and 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2) is a bivariate polynomial. A 
pair of integers (𝑥0, 𝑦0) satisfying 𝐹 (𝑥0, 𝑦0) = 0 is called a trivial integer root (or non-trivial integer root) of 𝐹 (𝑥, 𝑦) if |8𝑥0 + 𝑒2| = 1
(or |8𝑥0 + 𝑒2| ≠ 1), respectively.

The author analyzed the solutions of 𝐹 (𝑥, 𝑦) by embedding a semiprime 𝑛 with two non-trivial factors 𝑝 and 𝑞 of the same 
bit-length. The following lemma presents this embedding.
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Lemma 1 ([1]). Let 𝑛 be a semiprime with non-trivial factors 𝑝, 𝑞 of the same bit-length. Suppose 𝑟1 = 𝑝 (mod 8), 𝑟2 = 𝑞 (mod 8), 𝑟 = 𝑛

(mod 8), 𝑘 = (𝑛 − 𝑟)∕8 and 𝑑 = (𝑟 − 𝑟1𝑟2)∕8. Let 𝑠 be an arbitrary integer satisfying 1 ≤ 𝑠 < (𝑝 − 𝑟1)∕8. Then, consider the following 
equations:

𝑓 = (𝑘− 8𝑠2 − (𝑟1 + 𝑟2)𝑠+ 𝑑) (mod (8𝑠+ 𝑟1)),

𝑐 = (𝑘− 8𝑠2 − (𝑟1 + 𝑟2)𝑠+ 𝑑 − 𝑓 )∕(8𝑠+ 𝑟1).

Consider the bivariate polynomial 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2), where 𝑒0 = 8𝑐 + 𝑟2 − 𝑟1, 𝑒1 = 𝑓 and 𝑒2 = 8𝑠 + 𝑟1. For any 
𝑦 < (𝑒20 − 32𝑒1)∕(16𝑒0 + 32𝑒2), 𝐹 (𝑥, 𝑦) possesses two roots. Moreover, it possesses only one non-trivial integer root (𝑥0, 𝑦0) that satisfies 
𝑝 = 8(𝑠 + 𝑥0) + 𝑟1 and 𝑞 = 8(𝑠 + 𝑐 − 𝑥0 − 𝑦0) + 𝑟2.

Note that throughout our paper, we explicitly mention and utilize the existence of two prime factors of the same bit-length, 
although it is implicitly mentioned in [1], to ensure clear and precise descriptions.

Using the aforementioned findings, the author introduced the concept of RSA-polynomials and the corresponding RSA-polynomial 
problem.

Definition 2 ([1]). Let 𝑒0, 𝑒1 and 𝑒2 be arbitrary integers. A bivariate polynomial 𝐹 (𝑥, 𝑦) is referred to as an RSA-polynomial if 
𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2) and possesses only one non-trivial integer root.

The RSA-polynomial algorithm [1, Algorithm 1] is restated in Algorithm 1 and illustrates a method to generate RSA-polynomials 
using an RSA modulus with two distinct primes of the same bit-length.

Algorithm 1 RSA-polynomial algorithm.

Require: An RSA modulus 𝑛 = 𝑝𝑞, 𝑟1 = 𝑝 (mod 8), 𝑟2 = 𝑞 (mod 8), a random integer 𝑠 ∈ [1, (𝑝 − 𝑟1)∕8 − 1].
Ensure: An RSA-polynomial 𝐹 (𝑥, 𝑦) satisfying Definition 2.

1: 𝑟 ← 𝑛 (mod 8)
2: 𝑘 ← (𝑛 − 𝑟)∕8
3: 𝑑 ← (𝑟 − 𝑟1𝑟2)∕8
4: 𝑓 ← (𝑘 − 8𝑠2 − (𝑟1 + 𝑟2)𝑠 + 𝑑) (mod (8𝑠 + 𝑟1))
5: 𝑐← (𝑘 − 8𝑠2 − (𝑟1 + 𝑟2)𝑠 + 𝑑 − 𝑓 )∕(8𝑠 + 𝑟1)
6: 𝑒0 = 8𝑐 + 𝑟2 − 𝑟1
7: 𝑒1 = 𝑓

8: 𝑒2 = 8𝑠 + 𝑟1
9: return 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2).

RSA polynomials offer a solution for minimizing the storage requirements of systems. Instead of storing the factors of a semiprime 
number 𝑛 = 𝑝𝑞, the RSA-polynomial algorithm can be utilized to generate an RSA polynomial 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2)
with a non-trivial integer root (𝑥0, 𝑦0), ensuring that 𝑥0 is sufficiently small, thereby reducing storage costs. Subsequently, we store 
𝑥0 and broadcast 𝐹 (𝑥, 𝑦). By utilizing 𝑥0 and 𝐹 (𝑥, 𝑦), and without engaging in any time-consuming mathematical operations, the 
non-trivial factors are computed as 𝑝 = 8𝑥0 + 𝑒2 and 𝑞 = 𝑒0 + 𝑒2 − 8(𝑥0 + 𝑦0).

The literature on breaking RSA and its connection to the hardness of factoring has been extensively discussed in [6–8]. The author 
emphasizes the RSA-polynomial problem and its hardness as follows. For more detailed information and proofs, we refer readers to 
[1].

Problem 1 ([1]). Consider an RSA-polynomial 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2). The problem is to find the non-trivial integer 
root of 𝐹 (𝑥, 𝑦) given 𝐹 (𝑥, 𝑦).

Theorem 1 ([1]). Solving the RSA-polynomial problem is at least as difficult as solving the factoring problem.

Furthermore, utilizing the RSA-polynomial problem and the lattice basis reduction algorithm, the author proposes a strategy [1, 
Theorem 5] for factoring semiprimes, building upon the works of Coppersmith [9,10].

Theorem 2 ([1]). Let 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2) be an RSA-polynomial with the non-trivial integer root (𝑥0, 𝑦0). Suppose 
|𝑥0| ≤𝑋, |𝑦0| ≤ 𝑌 and 𝑊 =max{8𝑋2, |𝑒0|𝑋, |𝑒1|, 8𝑋𝑌 , |𝑒2|𝑌 }. If 𝑋2𝑌 <𝑊 1∕2∕215∕2, then the non-trivial integer root of 𝐹 (𝑥, 𝑦) can be 
computed in polynomial time.

Our contribution. In this work, we revisit and address the problem of semiprime factorization based on RSA-polynomials by consider-

ing specific forms of bivariate polynomials. Our approach leverages advanced and refined lattice-based techniques and constructions, 
as presented in [11] and [12]. We enhance the existing RSA-polynomial based semiprime factoring attacks by thoroughly analyzing 
2

the unclear condition 𝑋2𝑌 <𝑊 1∕2∕215∕2 and optimizing the effectiveness of factoring attacks.
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Furthermore, we identify certain cases where Theorem 1 is not applicable and uncover potential vulnerabilities in Problem 1. As 
a result, we demonstrate that the proposed RSA-polynomial based commitment scheme in [1] does not meet the hiding property, 
enabling us to recover both the message and its corresponding opening value.

To support our claims, we conduct a series of numerical experiments based on examples generated using Algorithm 1. Through 
these experiments, we validate the efficacy and reliability of our proposed factoring attacks. The results obtained from these computer 
experiments serve as compelling evidence for the effectiveness of our approach.

Organization. The remaining content of this paper is structured as follows. In Section 2, we provide a comprehensive review of 
essential definitions and fundamental theorems that are crucial to our approach in solving bivariate polynomials of a specific form. 
Section 3 presents two improved theorems specifically used for RSA-polynomial based semiprime factorization. We address the 
previously ambiguous condition 𝑋2𝑌 < 𝑊 1∕2∕215∕2 from [1] and introduce two novel lattice-based factoring attacks based on 
these enhanced theorems. To validate the practicality and efficiency of our factoring attacks, we conduct extensive experiments in 
Section 4. The experimental results are analyzed and discussed, shedding light on the feasibility of our proposed approach. Finally, 
in Section 5, we summarize the key findings of this paper.

2. Preliminaries

We provide an overview of the fundamental concepts and definitions involved in solving bivariate integer polynomials and intro-

duce a significant theorem. We then present a parameterized theorem specifically tailored for solving bivariate integer polynomials 
with certain Newton polygons. To streamline the analysis in this paper, we omit a detailed discussion of lattice conceptions. For 
further details, refer to [10,13,11,12,14–16]. We first provide the formal definitions of asymptotic notations.

Definition 3 ([17]). Three asymptotic notations 𝑂, Θ, and 𝑜 are defined as follows:

• 𝑂-notation describes an asymptotic upper bound. For a given function 𝑔(𝑛), we denote by 𝑓 (𝑛) = 𝑂(𝑔(𝑛)) such that there exist 
positive constants 𝑐 and 𝑛0 satisfying 0 ≤ 𝑓 (𝑛) ≤ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛0.

• Θ-notation describes an asymptotic tight bound. For a given function 𝑔(𝑛), we denote by 𝑓 (𝑛) = Θ(𝑔(𝑛)) such that there exist 
positive constants 𝑐1, 𝑐2, and 𝑛0 satisfying 0 ≤ 𝑐1𝑔(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐2𝑔(𝑛) for all 𝑛 ≥ 𝑛0.

• 𝑜-notation is provided to denote an upper bound that is not asymptotically tight. For a given function 𝑔(𝑛), we denote by 
𝑓 (𝑛) = 𝑜(𝑔(𝑛)) such that for any positive constant 𝑐 > 0, there exists a constant 𝑛0 > 0 satisfying 0 ≤ 𝑓 (𝑛) < 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛0.

If an integer polynomial 𝑓 (𝑥, 𝑦) cannot be factored further, it is considered irreducible. In such cases, if 𝑓 (𝑥, 𝑦) can be written as 
the product of two other integer polynomials 𝑔(𝑥, 𝑦) and ℎ(𝑥, 𝑦), both 𝑔(𝑥, 𝑦) and ℎ(𝑥, 𝑦) must have absolute values equal to 1. To 
establish an index set for any monomial set 𝑀 containing variables 𝑥 and 𝑦, we define 𝑀 as the collection of (𝑖, 𝑗) ∈ ℕ2 satisfying 
𝑥𝑖𝑦𝑗 ∈𝑀 . The convex hull associated with 𝑀 is denoted as 𝖼𝗁{(𝑖, 𝑗) ∈ ℕ2 ∶ 𝑥𝑖𝑦𝑗 ∈𝑀}. Additionally, the Newton polygon for 𝑓 (𝑥, 𝑦)
is defined as:

𝖭(𝑓 ) ∶= 𝖼𝗁{(𝑖, 𝑗) ∈ℕ2 ∶ 𝑐𝑖𝑗 ≠ 0}.

When solving bivariate integer polynomials, it is crucial to identify the Newton polygon of an integer polynomial and its polyno-

mial norm. The definition of the polynomial norm is provided as follows. The 𝓁𝑝-norm of an integer polynomial 𝑓 (𝑥, 𝑦) =
∑
𝑐𝑖𝑗𝑥

𝑖𝑦𝑗 ∈
ℤ[𝑥, 𝑦] is ‖𝑓 (𝑥, 𝑦)‖𝑝 = (∑|𝑐𝑖𝑗 |𝑝)1∕𝑝, which is commonly used for solving bivariate integer polynomials, as seen in [18,11,19]. No-

tably, it can be derived directly from the above definition as |𝑓 (𝑥, 𝑦)|∞ =max{|𝑐𝑖𝑗 |} for 𝑓 (𝑥, 𝑦) =
∑
𝑐𝑖𝑗𝑥

𝑖𝑦𝑗 . To ensure the extraction 
of roots from a given bivariate integer polynomial, we provide the following definitions.

Definition 4 ([11]). Let 𝑓 (𝑥, 𝑦) be a bivariate integer polynomial, and let 𝑆 and 𝑀 be two finite non-empty monomial sets in the 
variables 𝑥 and 𝑦. The sets 𝑆 and 𝑀 are called admissible for 𝑓 (𝑥, 𝑦) if the following conditions hold:

1. The polynomial 𝛼 ⋅ 𝑓 (𝑥, 𝑦) is defined over 𝑀 for every monomial 𝛼 ∈ 𝑆 .

2. The polynomial ℎ(𝑥, 𝑦) is defined over 𝑆 if 𝑔(𝑥, 𝑦) = ℎ(𝑥, 𝑦) ⋅ 𝑓 (𝑥, 𝑦) for some polynomial ℎ(𝑥, 𝑦) and every polynomial 𝑔(𝑥, 𝑦)
defined over 𝑀 .

Definition 5 ([11]). The Minkowski sum 𝐴 + 𝐵 of two index sets 𝐴 and 𝐵 is defined as 𝐴 + 𝐵 = {(𝑎1, 𝑎2) + (𝑏1, 𝑏2) ∶ (𝑎1, 𝑎2) ∈
𝐴, (𝑏1, 𝑏2) ∈ 𝐵}.

It is straightforward to satisfy the first condition of Definition 4 by choosing 𝑀 such that 𝑀 = 𝖭(𝑓 ) + 𝑆 , where 𝖭(𝑓 ) is the 
Newton polygon of the given integer polynomial 𝑓 (𝑥, 𝑦) and 𝑆 is a given set. In almost all cases, this choice also satisfies the second 
condition of Definition 4, making 𝑆 and 𝑀 admissible for 𝑓 (𝑥, 𝑦). We introduce the following lemma from [11], which establishes 
3

the admissibility of specific monomial sets 𝑆 and 𝑀 when the Newton polygon 𝖭(𝑓 ) of 𝑓 (𝑥, 𝑦) is an extended rectangle.
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Fig. 1. The graphical extended rectangle construction and its corresponding Newton polygon indicated by the shaded area in the lower left corner.

Lemma 2 ([11]). Assume that the Newton polygon 𝖭(𝑓 ) of 𝑓 (𝑥, 𝑦) is an extended rectangle, defined as {(𝑖, 𝑗) ∈ ℕ2 ∶ 0 ≤ 𝑖 ≤ 𝛾𝑑 + 𝜆(𝑑 −
𝑗), 0 ≤ 𝑗 ≤ 𝑑} for a positive integer 𝑑 and two positive real numbers 𝛾 and 𝜆. Then, the monomial sets 𝑆 and 𝑀 corresponding to the 
following index sets are admissible for 𝑓 (𝑥, 𝑦):

𝑆 = {(𝑖, 𝑗) ∈ ℕ2 ∶ 0 ≤ 𝑖 ≤ 𝑐𝑘+ 𝜆(𝑘− 𝑗), 0 ≤ 𝑗 ≤ 𝑘},

𝑀 = {(𝑖, 𝑗) ∈ ℕ2 ∶ 0 ≤ 𝑖 ≤ 𝑐𝑘+ 𝛾𝑑 + 𝜆(𝑘+ 𝑑 − 𝑗), 0 ≤ 𝑗 ≤ 𝑘+ 𝑑},

where 𝑘 ∈ℕ controls low-order error terms, and 𝑐 > 0 optimizes the solving bound.

Fig. 1 illustrates the construction of an extended rectangle as described in [11], and further details and proofs can be found in 
[11, Lemma 7].

The Blömer-May theorem, as presented in [11], offers a strategy for extracting potential roots of bivariate integer polynomials.

Theorem 3 ([11]). Consider an irreducible integer polynomial 𝑓 (𝑥, 𝑦) in variables 𝑥 and 𝑦, where the degrees of 𝑥 and 𝑦 are at most 𝑑𝑥
and 𝑑𝑦 respectively. Let 𝑋 and 𝑌 be the upper bounds on the potential root (𝑥′, 𝑦′), 𝑊 denote |𝑓 (𝑥𝑋, 𝑦𝑌 )|∞, and let 𝑆 and 𝑀 be two 
admissible monomial sets for 𝑓 (𝑥, 𝑦) with 𝑆 ⊆𝑀 . Set 𝑠 = |𝑆| as the cardinality of 𝑆 , 𝑚 = |𝑀| as the cardinality of 𝑀 , 𝑠𝑥 =

∑
𝑥𝑖𝑦𝑗∈𝑀⧵𝑆 𝑖

as the sum of the 𝑖 values for monomials 𝑥𝑖𝑦𝑗 in 𝑀 ⧵ 𝑆 , and 𝑠𝑦 =
∑

𝑥𝑖𝑦𝑗∈𝑀⧵𝑆 𝑗 as the sum of the 𝑗 values for monomials 𝑥𝑖𝑦𝑗 in 𝑀 ⧵ 𝑆 . 
Then all potential (𝑥′, 𝑦′) satisfying 𝑓 (𝑥′, 𝑦′) = 0 can be extracted in time polynomial in 𝑚, 𝑑𝑥, 𝑑𝑦, and log𝑊 provided 𝑋𝑠𝑥𝑌 𝑠𝑦 < 𝑊 𝑠, 
under the assumption that (𝑚 − 𝑠)2 =𝑂(𝑠𝑑𝑥𝑑𝑦).

Note that the specific lattice-based proof for Theorem 3 is not included in this paper, but readers can refer to [11, Section 5]

for a detailed explanation. The subsequent sections of this paper will further explore the application of Theorem 3 in the context of 
RSA-polynomial based semiprime factorization, providing insights into the efficiency and effectiveness of the proposed method.

While the Blömer-May theorem cannot be directly applied to RSA-polynomial based semiprime factorization, we present a pa-

rameterized theorem that encapsulates its essence and is tailored for solving bivariate integer polynomials with a specific Newton 
polygon structure.

Theorem 4. Consider a bivariate integer polynomial 𝑓 (𝑥, 𝑦) =
∑
𝑐𝑖𝑗𝑥

𝑖𝑦𝑗 , whose Newton polygon is an extended rectangle, i.e., 𝖭(𝑓 ) =
(𝑖, 𝑗) ∈ℕ2 ∶ 0 ≤ 𝑖 ≤ 𝛾𝑑 + 𝜆(𝑑 − 𝑗), 0 ≤ 𝑗 ≤ 𝑑, where 𝑑 is a positive integer and 𝛾 and 𝜆 are positive real numbers. The upper bounds for the 
roots (𝑥′, 𝑦′) are denoted as 𝑋 and 𝑌 , and 𝑊 is defined as |𝑓 (𝑥𝑋, 𝑦𝑌 )|∞. Under the condition that

𝑋𝑐2+2𝑐𝛾+2𝑐𝜆+𝛾𝜆+𝜆2𝑌 2𝑐+𝛾+𝜆 <𝑊
2𝑐+𝜆
𝑑 , (1)

where 𝑐 > 0 is an optimizing parameter, all potential roots (𝑥′, 𝑦′) of 𝑓 (𝑥, 𝑦) can be solved in time polynomial in log𝑊 .

Proof. Note that 𝑓 (𝑥, 𝑦) is an irreducible polynomial with a Newton polygon 𝖭(𝑓 ) = {(𝑖, 𝑗) ∈ ℕ2 ∶ 0 ≤ 𝑖 ≤ 𝛾𝑑 + 𝜆(𝑑 − 𝑗), 0 ≤ 𝑗 ≤ 𝑑}. 
We can construct two admissible sets 𝑆 and 𝑀 according to Lemma 2, where

𝑆 = {𝑥𝑖𝑦𝑗 ∶ 0 ≤ 𝑖 ≤ 𝑐𝑘+ 𝜆(𝑘− 𝑗), 0 ≤ 𝑗 ≤ 𝑘},

𝑀 = {𝑥𝑖𝑦𝑗 ∶ 0 ≤ 𝑖 ≤ 𝑐𝑘+ 𝛾𝑑 + 𝜆(𝑘+ 𝑑 − 𝑗), 0 ≤ 𝑗 ≤ 𝑘+ 𝑑},

with 𝑘 ∈ ℕ being a sufficiently large number and 𝑐 > 0 being an optimizing parameter. Next, we calculate the values of 𝑠, 𝑚, 𝑠𝑥, and 
𝑠𝑦 as stated in Theorem 3.

𝑠 =
𝑘∑ 𝑐𝑘+𝜆(𝑘−𝑗)∑

1 = 2𝑐 + 𝜆
𝑘2 + 𝑜(𝑘2),
4

𝑗=0 𝑖=0 2
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𝑚 =
𝑘+𝑑∑
𝑗=0

𝑐𝑘+𝛾𝑑+𝜆(𝑘+𝑑−𝑗)∑
𝑖=0

1 = 2𝑐 + 𝜆

2
𝑘2 + 𝑜(𝑘2),

𝑠𝑥 =
𝑘+𝑑∑
𝑗=0

𝑐𝑘+𝛾𝑑+𝜆(𝑘+𝑑−𝑗)∑
𝑖=0

𝑖−
𝑘∑

𝑗=0

𝑐𝑘+𝜆(𝑘−𝑗)∑
𝑖=0

𝑖 = 𝑑(𝑐2 + 2𝑐𝛾 + 2𝑐𝜆+ 𝛾𝜆+ 𝜆2)
2

𝑘2 + 𝑜(𝑘2),

𝑠𝑦 =
𝑘+𝑑∑
𝑗=0

𝑐𝑘+𝛾𝑑+𝜆(𝑘+𝑑−𝑗)∑
𝑖=0

𝑗 −
𝑘∑

𝑗=0

𝑐𝑘+𝜆(𝑘−𝑗)∑
𝑖=0

𝑗 = 𝑑(2𝑐 + 𝛾 + 𝜆)
2

𝑘2 + 𝑜(𝑘2).

By substituting these values into the inequality 𝑋𝑠𝑥𝑌 𝑠𝑦 <𝑊 𝑠 and omitting lower order terms 𝑜(𝑘2) for simplicity, we obtain

𝑋
𝑑(𝑐2+2𝑐𝛾+2𝑐𝜆+𝛾𝜆+𝜆2)

2 𝑘2
𝑌

𝑑(2𝑐+𝛾+𝜆)
2 𝑘2

<𝑊
2𝑐+𝜆
2 𝑘2

,

which can be simplified to

𝑋𝑐2+2𝑐𝛾+2𝑐𝜆+𝛾𝜆+𝜆2𝑌 2𝑐+𝛾+𝜆 <𝑊
2𝑐+𝜆
𝑑 .

Furthermore, we have 𝑑𝑥 = (𝛾 + 𝜆)𝑑 and 𝑑𝑦 = 𝑑, which implies (𝑚 − 𝑠)2 = 𝑂(𝑠𝑑𝑥𝑑𝑦) = 𝑂(𝑘2). The time complexity is mainly 
determined by log𝑊 since 𝑑𝑥, 𝑑𝑦 ≪ log𝑊 , and we set 𝑘 = Θ(log𝑊 ). Therefore, the running time is polynomial in terms of 
log𝑊 . □

Besides, Jochemsz and May [12] described a lattice-based method for finding small modular and integer roots of multivariate 
polynomials. In [12, Appendix B], a similar result for solving bivariate integer polynomials with the same Newton polygon was 
presented. The result is stated as follows.

Theorem 5 ([12]). Given a bivariate integer polynomial 𝑓 (𝑥, 𝑦) =
∑
𝑐𝑖𝑗𝑥

𝑖𝑦𝑗 , where its Newton polygon is an extended rectangle, i.e., 
𝖭(𝑓 ) = {(𝑖, 𝑗) ∈ ℕ2 ∶ 0 ≤ 𝑖 ≤ 𝛾𝑑 + 𝜆(𝑑 − 𝑗), 0 ≤ 𝑗 ≤ 𝑑}, with 𝑑 being a positive integer and 𝛾, 𝜆 being two positive real numbers. The upper 
bounds for the roots (𝑥′, 𝑦′) are denoted as 𝑋 and 𝑌 , and 𝑊 is defined as |𝑓 (𝑥𝑋, 𝑦𝑌 )|∞. Under the condition that

𝑋3𝛾2+3𝛾𝜆+𝜆2+4𝛾𝜏+2𝜆𝜏+𝜏2𝑌 3𝛾+𝜆+2𝜏 <𝑊
2𝛾+𝜆+2𝜏

𝑑 , (2)

where 𝜏 ≥ 0 is an optimizing parameter, all potential roots (𝑥′, 𝑦′) of 𝑓 (𝑥, 𝑦) can be solved in time polynomial in log𝑊 .

The proof of this theorem follows a similar manner as the one of Theorem 4, with the only difference being the definitions of the 
two admissible sets 𝑆 and 𝑀 .

𝑆 = {𝑥𝑖𝑦𝑗 ∶ 0 ≤ 𝑖 ≤ 𝛾𝑑(𝑚− 1) + 𝜆(𝑑(𝑚− 1) − 𝑗) + 𝜏𝑑𝑚, 0 ≤ 𝑗 ≤ 𝑑(𝑚− 1)},

𝑀 = {𝑥𝑖𝑦𝑗 ∶ 0 ≤ 𝑖 ≤ 𝛾𝑑𝑚+ 𝜆(𝑑𝑚− 𝑗) + 𝜏𝑑𝑚, 0 ≤ 𝑗 ≤ 𝑑𝑚},

where 𝑚 ∈ ℕ is a sufficiently large number and 𝜏 ≥ 0 is an optimizing parameter. Similarly, we calculate the values of |𝑆|, |𝑀|, 𝑠𝑥, 
and 𝑠𝑦 as follows.

|𝑆| =
𝑑(𝑚−1)∑
𝑗=0

𝛾𝑑(𝑚−1)+𝜆(𝑑(𝑚−1)−𝑗)+𝜏𝑑𝑚∑
𝑖=0

1 = 𝑑2(2𝛾 + 𝜆+ 2𝜏)
2

𝑚2 + 𝑜(𝑚2),

|𝑀| =
𝑑𝑚∑
𝑗=0

𝛾𝑑𝑚+𝜆(𝑑𝑚−𝑗)+𝜏𝑑𝑚∑
𝑖=0

1 = 𝑑2(2𝛾 + 𝜆+ 2𝜏)
2

𝑚2 + 𝑜(𝑚2),

𝑠𝑥 =
𝑑𝑚∑
𝑗=0

𝛾𝑑𝑚+𝜆(𝑑𝑚−𝑗)+𝜏𝑑𝑚∑
𝑖=0

𝑖−
𝑑(𝑚−1)∑
𝑗=0

𝛾𝑑(𝑚−1)+𝜆(𝑑(𝑚−1)−𝑗)+𝜏𝑑𝑚∑
𝑖=0

𝑖 = 𝑑3(3𝛾2 + 3𝛾𝜆+ 𝜆2 + 4𝛾𝜏 + 2𝜆𝜏 + 𝜏2)
2

𝑚2 + 𝑜(𝑚2),

𝑠𝑦 =
𝑑𝑚∑
𝑗=0

𝛾𝑑𝑚+𝜆(𝑑𝑚−𝑗)+𝜏𝑑𝑚∑
𝑖=0

𝑗 −
𝑑(𝑚−1)∑
𝑗=0

𝛾𝑑(𝑚−1)+𝜆(𝑑(𝑚−1)−𝑗)+𝜏𝑑𝑚∑
𝑖=0

𝑗 = 𝑑3(3𝛾 + 𝜆+ 2𝜏)
2

𝑚2 + 𝑜(𝑚2).

By substituting these values into the inequality 𝑋𝑠𝑥𝑌 𝑠𝑦 <𝑊 |𝑆| and omitting lower order terms 𝑜(𝑚2) for simplicity, we obtain

𝑋
𝑑3(3𝛾2+3𝛾𝜆+𝜆2+4𝛾𝜏+2𝜆𝜏+𝜏2)

2 𝑚2
𝑌

𝑑3(3𝛾+𝜆+2𝜏)
2 𝑚2

<𝑊
𝑑2(2𝛾+𝜆+2𝜏)

2 𝑚2
,

which is further reduced to
2𝛾+𝜆+2𝜏
5

𝑋3𝛾2+3𝛾𝜆+𝜆2+4𝛾𝜏+2𝜆𝜏+𝜏2𝑌 3𝛾+𝜆+2𝜏 <𝑊 𝑑 .
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For completeness, we provide the details on how to construct the lattices for Theorem 4 and Theorem 5 by the shift polynomials and 
the basis matrix in Appendix A.1 and Appendix A.2, respectively.

3. Refined analysis with optimized factoring attacks

We carefully examine Theorem 2 and refine its ambiguous condition 𝑋2𝑌 < 𝑊 1∕2∕215∕2, which provides a clearer and more 
precise requirement for the RSA-polynomial based factorization. This refinement enhances the performance of the lattice-based 
method significantly. In order to further optimize the factoring attacks, we introduce two improved lattice constructions based on 
Theorem 4 and Theorem 5.

By using the proposed factoring attacks, we demonstrate that Problem 1 is not a cryptographic hard problem in all cases. This 
finding affects the validity of Theorem 1. Additionally, we conduct a careful analysis of the commitment scheme proposed in [1]. We 
identify and address several flaws present in the original design. By fixing these issues, we improve the security and reliability of the 
commitment scheme significantly.

3.1. Revisiting RSA-polynomial based semiprime factorization

Before delving into the examination of Theorem 2, it is necessary to establish the bounds on various parameters present in the 
RSA-polynomial. For the sake of simplicity, we consider an RSA modulus 𝑛 = 𝑝𝑞 using two 𝓁-bit primes as a base quantity, while 
representing other parameters such as 𝑒0, 𝑒1, 𝑒2 as distinct powers of 2. Moreover, we employ Θ-notation to provide precise bounds 
on the involved parameters, ensuring 𝑐1, 𝑐2 occurred in Definition 3 remain within negligible constants relative to 𝑛. This facilitates 
the derivation of 𝑋, 𝑌 , and 𝑊 , as used in Theorem 4 and Theorem 5.

To determine the parameter bounds, we introduce Lemma 3 based on Lemma 1. The following lemma provides three distinct 
cases, depending on the relationship between 𝑠 and 𝑥0.

Lemma 3. Let 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2) be an RSA-polynomial using an RSA modulus 𝑛 = 𝑝𝑞 with two primes of the same 
bit-length 𝓁. Suppose that 𝑠 and 𝑥0 have bit-lengths of 𝜖 and 𝜉 respectively, implying 𝑠 =Θ(2𝜖) and 𝑥0 = Θ(2𝜉), other related parameters are 
bounded as follows.

Case 1. If 𝜉 < 𝜖 = 𝓁 − 3, indicating that 𝑠 > 𝑥0 and 𝑠 dominates 𝑝, the parameter bounds are as follows:

|𝑘| =Θ(22𝓁−3), |𝑑| =Θ(1), |𝑓 | =𝑂(2𝓁), |𝑐| =Θ(2𝓁−3),

|𝑒0| =Θ(2𝓁), |𝑒1| =𝑂(2𝓁), |𝑒2| =Θ(2𝓁), |𝑥0| =Θ(2𝜉), |𝑦0| =Θ(2𝜉).

Case 2. If 𝜖 = 𝜉 = 𝓁 − 4, indicating that 𝑠 and 𝑥0 have the same bit-length, the parameter bounds are as follows:

|𝑘| =Θ(22𝓁−3), |𝑑| =Θ(1), |𝑓 | =𝑂(2𝓁−1), |𝑐| =Θ(2𝓁−2),

|𝑒0| =Θ(2𝓁+1), |𝑒1| =𝑂(2𝓁−1), |𝑒2| =Θ(2𝓁−1), |𝑥0| =Θ(2𝓁−4), |𝑦0| =Θ(2𝓁−4).

Case 3. If 𝜖 < 𝜉 = 𝓁 − 3, indicating that 𝑠 < 𝑥0 and 𝑥0 dominates 𝑝, the parameter bounds are as follows:

|𝑘| =Θ(22𝓁−3), |𝑑| =Θ(1), |𝑓 | =𝑂(2𝜖+3), |𝑐| =Θ(22𝓁−𝜖−6),

|𝑒0| =Θ(22𝓁−𝜖−3), |𝑒1| =𝑂(2𝜖+3), |𝑒2| =Θ(2𝜖+3), |𝑥0| =Θ(2𝓁−3), |𝑦0| =Θ(22𝓁−𝜖−6).

Lemma 3 divides the analysis into the above three cases, capturing the distinct relationships between 𝑠 and 𝑥0 and providing 
clear parameter bounds for each scenario.

Proof. According to Lemma 1, we can determine the values of 𝑟1, 𝑟2, and 𝑟 based on the RSA-polynomial. These values are chosen 
from the small integers 1, 3, 5, or 7. Consequently, we have |𝑘| = (𝑛 − 𝑟)∕8 = Θ(𝑝𝑞∕8) = Θ(22𝓁−3) and |𝑑| = |(𝑟 − 𝑟1𝑟2)|∕8 = Θ(1). 
Since 𝑠 = Θ(2𝜖) and 𝑥0 = Θ(2𝜉) with the known relation 𝑝 = 8(𝑠 + 𝑥0) + 𝑟1 from Lemma 1, we can categorize the analysis into three 
cases based on the distinct relationships between 𝑠 and 𝑥0.

Considering the definition of 𝑓 = (𝑘 − 8𝑠2 − (𝑟1 + 𝑟2)𝑠 + 𝑑) (mod (8𝑠 + 𝑟1)), we find that |𝑓 | =𝑂(8𝑠 + 𝑟1) =𝑂(2𝜖+3). Similarly, we 
obtain |𝑐| =Θ(max{𝑘∕(8𝑠), 𝑠}) for 𝑐 = (𝑘 − 8𝑠2 − (𝑟1 + 𝑟2)𝑠 + 𝑑 − 𝑓 )∕(8𝑠 + 𝑟1). As 𝑠 ranges from 1 to (𝑝 − 𝑟1)∕8 − 1, we conclude that 
𝜖 ≤ 𝓁 − 3 and thus 𝜖 ≤ 2𝓁 − 𝜖 − 6. Consequently, we have |𝑐| =Θ(max{22𝓁−𝜖−6, 2𝜖}) =Θ(22𝓁−𝜖−6).1

Regarding 𝑒0 = 8𝑐 + 𝑟2 − 𝑟1, 𝑒1 = 𝑓 , and 𝑒2 = 8𝑠 + 𝑟1, it directly follows that |𝑒0| =Θ(22𝓁−𝜖−3), |𝑒1| =𝑂(2𝜖+3), and |𝑒2| =Θ(2𝜖+3). 
Finally, we aim to bound 𝑦0 based on 𝐹 (𝑥0, 𝑦0) = 8𝑥20 − 𝑒0𝑥0 + 𝑒1 + 𝑦0(8𝑥0 + 𝑒2) = 0. We have |𝑦0| = |(𝑒0𝑥0 − 8𝑥20 − 𝑒1)∕(8𝑥0 + 𝑒2)|, 
and its value depends on the relationship between 𝑠 and 𝑥0. We can divide the analysis into the following three cases.

1 Fortunately, we obtain this bound even if the special case where 𝑘 and 8𝑠2 have the same bit-length occurs (i.e., when 𝑠 has bit-length of 𝓁 − 3). The dominant 
component of the numerator of |𝑐| is |𝑘 − 8𝑠2| = Θ(|(𝑛 − 𝑟)∕8 − (𝑝 − 𝑟1)2∕8|) = Θ(|𝑛 − 𝑝2|∕8) = Θ(22𝓁−3) with overwhelming probability. Therefore, we deduce that 
6

|𝑐| =Θ(|𝑘 − 8𝑠2|∕(8𝑠)) =Θ(22𝓁−𝜖−6).
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Case 1. Suppose 𝜉 < 𝜖 = 𝓁 − 3, which implies 𝑠 > 𝑥0 and 𝑠 dominates 𝑝. In this case, we can determine the following bounds:

|𝑘| =Θ(22𝓁−3), |𝑑| =Θ(1), |𝑓 | =𝑂(2𝜖+3) =𝑂(2𝓁), |𝑐| =Θ(22𝓁−𝜖−6) = Θ(2𝓁−3),

|𝑒0| =Θ(22𝓁−𝜖−3) = Θ(2𝓁), |𝑒1| =𝑂(2𝜖+3) =𝑂(2𝓁), |𝑒2| =Θ(2𝜖+3) = Θ(2𝓁), |𝑥0| =Θ(2𝜉).

As 𝑒2 = 8𝑠 + 𝑟1 > 8𝑥0, we can deduce that |𝑦0| = |(𝑒0𝑥0 − 8𝑥20 − 𝑒1)∕(8𝑥0 + 𝑒2)| =Θ(max{𝑒0𝑥0∕𝑒2, 8𝑥20∕𝑒2, 𝑒1∕𝑒2}). Thus, we 
have

|𝑦0| =Θ(max{22𝓁−2𝜖+𝜉−6,22𝜉−𝜖 ,1}) = Θ(max{2𝜉 ,22𝜉−𝜖}) = Θ(2𝜉).

Case 2. Suppose 𝜖 = 𝜉 = 𝓁 − 4, which implies 𝑠 and 𝑥0 are of the same bit-length. In this case, we can determine the following 
bounds:

|𝑘| =Θ(22𝓁−3), |𝑑| =Θ(1), |𝑓 | =𝑂(2𝜖+3) =𝑂(2𝓁−1), |𝑐| =Θ(22𝓁−𝜖−6) = Θ(2𝓁−2),

|𝑒0| =Θ(22𝓁−𝜖−3) = Θ(2𝓁+1), |𝑒1| =𝑂(2𝜖+3) =𝑂(2𝓁−1), |𝑒2| =Θ(2𝜖+3) = Θ(2𝓁−1), |𝑥0| =Θ(2𝜉) = Θ(2𝓁−4).

As 𝑒2 = 8𝑠 + 𝑟1 and 8𝑥0 are of the same bit-length, we can deduce that |𝑦0| = |(𝑒0𝑥0 − 8𝑥20 − 𝑒1)∕(8𝑥0 + 𝑒2)| =
Θ(max{𝑒0∕8, 𝑥0, 𝑒1∕(8𝑥0)}). Thus, we have

|𝑦0| =Θ(max{22𝓁−𝜖−6,2𝜉 ,1}) = Θ(max{2𝓁−2,2𝓁−4}) = Θ(2𝓁−2).

Case 3. Suppose 𝜖 < 𝜉 = 𝓁 − 3, which implies 𝑠 < 𝑥0 and 𝑥0 dominates 𝑝. In this case, we can determine the following bounds:

|𝑘| =Θ(22𝓁−3), |𝑑| =Θ(1), |𝑓 | =𝑂(2𝜖+3), |𝑐| =Θ(22𝓁−𝜖−6),

|𝑒0| =Θ(22𝓁−𝜖−3), |𝑒1| =𝑂(2𝜖+3), |𝑒2| =Θ(2𝜖+3), |𝑥0| =Θ(2𝜉) = Θ(2𝓁−3).

As 𝑒2 = 8𝑠 + 𝑟1 < 8𝑥0, we can deduce that |𝑦0| = |(𝑒0𝑥0 −8𝑥20 − 𝑒1)∕(8𝑥0 + 𝑒2)| =Θ(max{𝑒0∕8, 𝑥0, 𝑒1∕(8𝑥0)}). Thus, we have

|𝑦0| =Θ(max{22𝓁−𝜖−6,2𝜉 ,1}) = Θ(max{22𝓁−𝜖−6,2𝓁−3}) = Θ(22𝓁−𝜖−6)

since 2𝓁 − 𝜖 − 6 > 𝓁 − 3, which is deduced from 𝜖 < 𝓁 − 3.

This completes the proof. □

In order to apply the RSA-polynomial problem to semiprime factorization, we follow Theorem 2 and determine the values of 𝑋, 
𝑌 , and 𝑊 , where |𝑥0| ≤𝑋, |𝑦0| ≤ 𝑌 and 𝑊 =max{8𝑋2, |𝑒0|𝑋, |𝑒1|, 8𝑋𝑌 , |𝑒2|𝑌 }.

Theorem 6. The values of 𝑋, 𝑌 , 𝑊 depend on the distinct relationships between 𝑠 and 𝑥0 and are determined as follows.

Case 1. Suppose 𝜉 < 𝜖 = 𝓁 − 3, which implies 𝑠 > 𝑥0 and 𝑠 dominates 𝑝. In this case, we have 𝑋 = 2𝜉 , 𝑌 = 2𝜉 , and 𝑊 = 2𝓁+𝜉 .
Case 2. Suppose 𝜖 = 𝜉 = 𝓁 − 4, which implies 𝑠 and 𝑥0 are of the same bit-length. In this case, we have 𝑋 = 2𝓁−4, 𝑌 = 2𝓁−4, and 

𝑊 = 22𝓁−3.

Case 3. Suppose 𝜖 < 𝜉 = 𝓁−3, which implies 𝑠 < 𝑥0 and 𝑥0 dominates 𝑝. In this case, we have 𝑋 = 2𝓁−3, 𝑌 = 22𝓁−𝜖−6, and 𝑊 = 23𝓁−𝜖−6.

Proof. We can substitute the values of 𝑋 and 𝑌 into the definition to calculate 𝑊 . Let us consider the three cases based on the 
distinct relationships between 𝑠 and 𝑥0.

Case 1. Suppose 𝜉 < 𝜖 = 𝓁−3, which implies 𝑠 > 𝑥0 and 𝑠 dominates 𝑝. From Lemma 3, we have 𝑋 = 𝑌 = 2𝜉 , and we can calculate 
𝑊 as follows:

𝑊 =max{8𝑋2, |𝑒0|𝑋, |𝑒1|,8𝑋𝑌 , |𝑒2|𝑌 } = max{22𝜉+3,2𝓁+𝜉 ,2𝓁 ,22𝜉+3,2𝓁+𝜉} = 2𝓁+𝜉

since 𝓁 + 𝜉 > 2𝜉 + 3.

Case 2. Suppose 𝜖 = 𝜉 = 𝓁 − 4, which implies 𝑠 and 𝑥0 are of the same bit-length. From Lemma 3, we have 𝑋 = 𝑌 = 2𝓁−4, and we 
can calculate 𝑊 as follows:

𝑊 =max{8𝑋2, |𝑒0|𝑋, |𝑒1|,8𝑋𝑌 , |𝑒2|𝑌 } = max{22𝓁−5,22𝓁−3,2𝓁−1,22𝓁−5,22𝓁−5} = 22𝓁−3.

Case 3. Suppose 𝜖 < 𝜉 = 𝓁 − 3, which implies 𝑠 < 𝑥0 and 𝑥0 dominates 𝑝. From Lemma 3, we have 𝑋 = 2𝓁−3 and 𝑌 = 22𝓁−𝜖−6, and 
we can calculate 𝑊 as follows:

𝑊 =max{8𝑋2, |𝑒0|𝑋, |𝑒1|,8𝑋𝑌 , |𝑒2|𝑌 } = max{22𝓁−3,23𝓁−𝜖−6,2𝜖+3,23𝓁−𝜖−6,22𝓁−3} = 23𝓁−𝜖−6
7

since 3𝓁 − 𝜖 − 6 > 2𝓁 − 3 and 3𝓁 − 𝜖 − 6 > 𝜖 + 3.
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This completes the proof. □

Now we examine Theorem 2 with the given unclear condition 𝑋2𝑌 <𝑊 1∕2215∕2 and present a refined analysis in the following 
proposition.

Proposition 1. Consider the RSA-polynomial 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2) using an RSA modulus 𝑛 = 𝑝𝑞 with two primes of the 
same bit-length 𝓁. Assuming 𝑠 and 𝑥0 have bit-lengths of 𝜖 and 𝜉 respectively, the condition 𝑋2𝑌 <𝑊 1∕2215∕2 in Theorem 2 is refined to 
𝜉 < 𝓁∕5 − 3. Moreover, the probability for conducting a successful factoring attack is 2−4𝓁∕5.

Proof. We examine the unclear condition 𝑋2𝑌 <𝑊 1∕2215∕2 in the three cases mentioned previously.

Case 1. In this case, we have 𝜉 < 𝜖 = 𝓁 − 3 and 𝑋 = 2𝜉 , 𝑌 = 2𝜉 , 𝑊 = 2𝓁+𝜉 . Substituting these values into the condition, 𝑋2𝑌 <

𝑊 1∕2215∕2 becomes 22𝜉2𝜉 < 2(𝓁+𝜉)∕2∕215∕2. Simplifying further, we get 25𝜉−𝓁+15 < 1, which implies 𝜉 < 𝓁∕5 − 3.

Case 2. In this case, we have 𝜖 = 𝜉 = 𝓁 − 4 and 𝑋 = 2𝓁−4, 𝑌 = 2𝓁−4, 𝑊 = 22𝓁−3. Substituting these values into the condition, 
𝑋2𝑌 <𝑊 1∕2215∕2 becomes 22𝓁−82𝓁−4 < 2(2𝓁−3)∕2∕215∕2. Simplifying further, we get 22𝓁−3 < 1, which implies 𝓁 < 3∕2.

Case 3. In this case, we have 𝜖 < 𝜉 = 𝓁 − 3 and 𝑋 = 2𝓁−3, 𝑌 = 22𝓁−𝜖−6, 𝑊 = 23𝓁−𝜖−6. Substituting these values into the condition, 
𝑋2𝑌 < 𝑊 1∕2215∕2 becomes 22𝓁−622𝓁−𝜖−6 < 2(3𝓁−𝜖−6)∕2∕215∕2. Simplifying further, we get 25𝓁−𝜖−3 < 1, which implies 𝜖 >
5𝓁 − 3.

From the analysis, it is evident that only Case 1 is valid, while Case 2 and Case 3 are invalid. Therefore, the refined condition 
for 𝑋2𝑌 <𝑊 1∕2215∕2 is 𝜉 < 𝓁∕5 − 3. When 𝜉 < 𝓁∕5 − 3, the values of 𝑥0 ranging from 1 to 2𝓁∕5−3 − 1 are vulnerable. Furthermore, 
since 𝑠 is chosen from 1 to (𝑝 − 𝑟1)∕8 −1 as shown in Algorithm 1, we can deduce that 𝑥0 can be chosen from 1 to (𝑝 − 𝑟1)∕8 −1 (i.e., 
2𝓁−3 − 1). Consequently, the probability of conducting a successful factoring attack is approximately

2𝓁∕5−3 − 1
2𝓁−3 − 1

≊ 2−4𝓁∕5.

This completes the proof. □

3.2. Optimizing RSA-polynomial based semiprime factoring

We aim to enhance and optimize the performance of semiprime factorization by utilizing more powerful tools, namely Theorem 4

and Theorem 5. As discussed in the proof of Proposition 1, we focus on the valid case where 𝜉 < 𝜖 = 𝓁 − 3 and 𝑋 = 2𝜉 , 𝑌 = 2𝜉 , 𝑊 =
2𝓁+𝜉 and propose the following theorems.

Theorem 7. Consider an RSA-polynomial 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2), where 𝑛 = 𝑝𝑞 is an RSA modulus with two primes of the 
same bit-length 𝓁, and assume it possesses a non-trivial integer root (𝑥0, 𝑦0). Assuming 𝑥0 has bit-length of 𝜉, then the non-trivial integer root 
can be computed, leading to the polynomial-time factorization of 𝑛 if 𝜉 < (3 −

√
5)𝓁∕2.

Proof. Let 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2) satisfy Lemma 1 and Definition 2. We aim to apply Theorem 4 with 𝑑 = 𝛾 = 𝜆 = 1 in 
(1) and obtain

𝑋𝑐2+4𝑐+2𝑌 2𝑐+2 <𝑊 2𝑐+1.

By substituting 𝑋 = 2𝜉 , 𝑌 = 2𝜉 , 𝑊 = 2𝓁+𝜉 and dealing with the exponents over 2, we have

𝜉(𝑐2 + 4𝑐 + 2) + 𝜉(2𝑐 + 2) < (𝓁 + 𝜉)(2𝑐 + 1),

which simplifies to

𝜉 <
2𝑐 + 1

𝑐2 + 4𝑐 + 3
𝓁.

By setting 𝑐 = (
√
5 − 1)∕2 to maximize the right side, we obtain

𝜉 <
3 −

√
5

2
𝓁. (3)

The executing time is a polynomial regarding log𝑊 , as well as a polynomial regarding log𝑛. After extracting the integer root (𝑥0, 𝑦0), 
the primes 𝑝 and 𝑞 can be computed as 𝑝 = 8𝑥0 + 𝑒2 and 𝑞 = 𝑒0 + 𝑒2 − 8(𝑥0 + 𝑦0), respectively. This completes the proof. □

Theorem 8. Consider an RSA-polynomial 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2), where 𝑛 = 𝑝𝑞 is an RSA modulus with two primes of the 
same bit-length 𝓁, and assume it possesses a non-trivial integer root (𝑥0, 𝑦0). Assuming 𝑥0 has bit-length of 𝜉, then the non-trivial integer root 
8

can be computed, leading to the polynomial-time factorization of 𝑛 if 𝜉 < 3𝓁∕8.
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Proof. Let 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2) satisfy Lemma 1 and Definition 2. We aim to apply Theorem 5 with 𝑑 = 𝛾 = 𝜆 = 1 in 
(2) and obtain

𝑋𝜏2+6𝜏+7𝑌 2𝜏+4 <𝑊 2𝜏+3.

By substituting 𝑋 = 2𝜉 , 𝑌 = 2𝜉 , 𝑊 = 2𝓁+𝜉 and considering the exponents over 2, we have

𝜉(𝜏2 + 6𝜏 + 7) + 𝜉(2𝜏 + 4) < (𝓁 + 𝜉)(2𝜏 + 3),

which simplifies to

𝜉 <
2𝜏 + 3

𝜏2 + 6𝜏 + 8
𝓁.

By setting 𝜏 = 0 to maximize the right side, we obtain

𝜉 <
3
8
𝓁. (4)

The executing time is a polynomial regarding log𝑊 , as well as a polynomial regarding log𝑛. After extracting the integer root (𝑥0, 𝑦0), 
the primes 𝑝 and 𝑞 can be computed as 𝑝 = 8𝑥0 + 𝑒2 and 𝑞 = 𝑒0 + 𝑒2 − 8(𝑥0 + 𝑦0), respectively. This completes the proof. □

As observed, the factoring bound has improved from 𝜉 < 𝓁∕5 − 3 to 𝜉 < max{(3 −
√
5)𝓁∕2, 3𝓁∕8}, i.e., 𝜉 < 0.3819𝓁, which 

corresponds to an increment of approximately 90%. Moreover, we demonstrate that Problem 1 has several weak cases where the 
factorization of the RSA modulus can be efficiently computed. Likewise, the probability of conducting a successful factoring attack 
is approximately 2(3−

√
5)𝓁∕2∕2𝓁−3 ≊ 2(1−

√
5)𝓁∕2 ≊ 2−0.618𝓁 .

For completeness, we present an improved approach to factor RSA semiprimes in Algorithm 2, which relies on the following 
definition.

Definition 6. Let 𝖱𝖾𝗆𝑟 be defined as follows: 𝖱𝖾𝗆1 = {(1, 1), (3, 3), (5, 5), (7, 7)}, 𝖱𝖾𝗆3 = {(1, 3), (3, 1), (7, 5), (5, 7)}, 𝖱𝖾𝗆5 =
{(1, 5), (5, 1), (7, 3), (3, 7)}, and 𝖱𝖾𝗆7 = {(1, 7), (7, 1), (3, 5), (5, 3)}.

The following algorithm outputs the non-trivial factors of a semiprime when it generates an RSA-polynomial satisfying Theorem 7

or Theorem 8. By randomly choosing a lucky 𝑠 for a given semiprime 𝑛, we can successfully find the factorization of 𝑛 with its prime 
factors. We have made two improvements: modifying the selection of a random 𝑠 to make the factoring attack more efficient and 
applying Theorem 7 or Theorem 8 instead of the original Theorem 2 to increase the success rate. Our improved RSA-polynomial 
based factoring algorithm serves as a candidate for the lattice-based modulus factorization problem, in addition to [9,20–26,16].

Algorithm 2 Improved RSA-polynomial based factoring algorithm.

Require: A semiprime 𝑛 whose bit-length is 2𝓁.

Ensure: The factorization of 𝑛 = 𝑝𝑞 with its primes 𝑝 and 𝑞.

1: 𝑟 ← 𝑛 (mod 8)
2: 𝑠 ← a random (𝓁 − 3)-bit integer

3: for (𝑟1, 𝑟2) ∈ 𝖱𝖾𝗆𝑟 do ⊳ 𝖱𝖾𝗆𝑟 is given in Definition 6

4: 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2) ← Algorithm 1 with the input (𝑛, 𝑟1 , 𝑟2 , 𝑠)
5: (𝑥0, 𝑦0) ← Theorem 7 or Theorem 8 with the input 𝐹 (𝑥, 𝑦)
6: if 𝑥0 and 𝑦0 exist as integers then

7: 𝑝 ← 8𝑥0 + 𝑒2
8: 𝑞← 𝑒0 + 𝑒2 − 8(𝑥0 + 𝑦0)
9: if 𝑝 × 𝑞 = 𝑛 then

10: return 𝑝 and 𝑞 ⊳ The factorization of 𝑛 = 𝑝𝑞 is found

11: else

12: go back to Step 2

13: end if

14: else

15: go back to Step 2

16: end if

17: end for

Note that while the improved RSA-polynomial based factoring algorithm increases the success rate of factoring semiprimes, it 
does not guarantee success for all instances. There may still be cases where the algorithm fails to find a non-trivial root. Additionally, 
the algorithm may take different amounts of time to run depending on the specific parameters of the RSA modulus and the random 
choices made during execution. Nonetheless, the improvements presented in Theorem 7 and Theorem 8 provide a more efficient 
9

approach to factoring semiprimes than Theorem 1 using the same RSA-polynomial.
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3.3. Breaking RSA-polynomial based commitment scheme

In [1], the RSA-polynomial based commitment scheme was introduced, with a focus on the commitment phase and verifying 
phase. The commitment phase involves the following steps for committing a message 𝑚 ∈ [1, 2𝓁−1 − 1], where 𝓁 ≥ 𝜅 and 𝜅 is the 
security parameter.

1. Generate two random primes 𝑝 and 𝑞 of the same bit-length 𝓁, such that 𝑛 = 𝑝𝑞 is a secure semiprime.

2. Compute 𝑛 = 𝑝𝑞, 𝑟1 = 𝑝 (mod 8), and 𝑟2 = 𝑞 (mod 8).
3. Compute 𝑠 = (𝑝 − 𝑟1)∕8 −𝑚.

4. Execute Algorithm 1 with the input (𝑛, 𝑟1, 𝑟2, 𝑠) to obtain an RSA-polynomial 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2).
5. Compute 𝑜 = (8𝑚2 − 𝑒0𝑚 + 𝑒1)∕(8𝑚 + 𝑒2).
6. Send (𝑛, 𝐹 (𝑥, 𝑦)) as the witness to the receiver.

7. Save 𝑜 as the opening value.

The author claims that the RSA-polynomial based commitment scheme satisfies the hiding property, implying that a polynomial-

time malicious receiver cannot compute 𝑚 or 𝑜 using the known witness. However, as we have demonstrated, it is possible for a 
polynomial-time malicious receiver to break this commitment scheme when committing a short message 𝑚 < 2(3−

√
5)𝓁∕2. In such 

cases, the message 𝑚 and its corresponding opening value 𝑜, which are considered as a non-trivial root of the RSA-polynomial, can 
be recovered by solving the polynomial. This leads us to the following proposition.

Proposition 2. Given the commitment phase of RSA-polynomial based commitment scheme, as described in [1] with a predetermined 
parameter 𝓁, suppose that a message 𝑚 is of bit-length 𝜉, then 𝑚 and the opening value 𝑜 can be computed in polynomial time if 𝜉 <
(3 −

√
5)𝓁∕2.

The proof of Proposition 2 is a direct consequence of Theorem 7, which we omit here. Furthermore, the upper bound 2𝓁−1 − 1 for 
𝑚 is also infeasible because 𝑠 = (𝑝 − 𝑟1)∕8 −𝑚 might be a negative integer, which conflicts with the condition 1 ≤ 𝑠 ≤ (𝑝 − 𝑟1)∕8 − 1
in Algorithm 1. Hence, to ensure that 𝑠 remains a positive integer, the maximum bit-length of 𝑚 must be 𝓁 − 4. Taking these factors 
into consideration, we can refine the range of 𝑚 to 𝑚 ∈ [2(3−

√
5)𝓁∕2−1, 2𝓁−4 − 1].

4. Experimental results

In order to verify the validity and effectiveness of our proposed factoring attacks, which rely on Theorem 7 and Theorem 8, 
we conducted a series of numerical experiments. These experiments were carried out on a computer running a 64-bit Windows 10 
operating system with Ubuntu 22.04 installed on WSL 2. The system was equipped with a CPU operating at 2.80 GHz and 16 GB of 
RAM. To perform the experiments, the LLL algorithm [27], which is readily available in the SageMath [28] software platform, was 
used for lattice reduction.

To test the proposed RSA-polynomial based factoring attacks, we randomly generated two prime numbers of bit-length 𝓁. Then, 
we generated a random value 𝑠 with a bit-length 𝜉, which represents the unknown variable 𝑥0. Subsequently, we calculated the values 
of 𝑒0, 𝑒1, and 𝑒2 using Algorithm 1, with input parameters 𝑛, 𝑠, 𝑟1 and 𝑟2. By following this process, we constructed RSA-polynomials 
𝐹 (𝑥, 𝑦) that satisfied Definition 2.

During the experiments, we carefully selected parameters 𝑘 and 𝑐 for Theorem 7 (or 𝑚 and 𝜏 for Theorem 8) to control the 
lattice settings and perform the proposed factoring attacks. Each simulated experiment instance was tested five times, ensuring the 
successful extraction of the desired integer root. We collected numerous polynomial equations that satisfied the solvable requirements 
and used the resultant computation approach to extract the desired integer root. We have compiled the results from our factoring 
attacks in Table 1, showing the outcomes of our experiments.

The column labeled ‘𝜉𝑒’ in Table 1 presents the experimental number of bits required for a successful factoring attack. The 
column labeled ‘𝜉𝑡 ’ corresponds to the theoretical number of bits required for executing the proposed factoring attacks, as specified 
in Theorem 7 and Theorem 8. The ‘Theorem’ column indicates the particular theorem employed in our simulated RSA-polynomial 
instances. The related lattice parameters are given in ‘𝑘’ and ‘𝑐’ columns for using Theorem 4, or ‘𝑚’ and ‘𝜏 ’ columns for using 
Theorem 5, which result in the lattice dimension denoted by ‘𝜔’. The running time of each experiment is recorded in the ‘Time’ 
column, measured in seconds.

In each experiment, we gathered a sufficient number of integer polynomials that shared a common root. From this collection, 
we carefully selected a subset to solve the shared root. By obtaining the values of 𝑥0 and 𝑦0, we calculated 𝑝 = 8𝑥0 + 𝑒2 and 
𝑞 = 𝑒0 + 𝑒2 − 8(𝑥0 + 𝑦0), which led to the factorization of 𝑛 = 𝑝𝑞. Through these experiments, we successfully verified the validity 
and effectiveness of the proposed factoring attacks. However, when comparing the values of 𝜉𝑒 with 𝜉𝑡 in Table 1, we observed that 
the experimental results fall short of the theoretical ones by several bits. This discrepancy may be attributed to the limitation of 
computing resources, which prevented us from achieving a sufficiently large lattice dimension.

Based on the observations from Table 1, we conclude that Theorem 7 slightly outperforms Theorem 8 in terms of efficiency. 
Specifically, the factoring attacks based on Theorem 7 yield identical experimental results compared to those based on Theorem 8
10

when applying lower-dimensional lattices (30 vs. 35). This phenomenon is also compatible with the theoretical comparison between 
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Table 1

Experimental results of RSA-polynomial based factoring attacks with various settings.

𝓁 𝜉𝑒 𝜉𝑡 Theorem 𝑘 𝑐 𝑚 𝜏 𝜔 Time

512 164 196 Theorem 7 3 2∕3 - - 30 0.57 s
512 168 196 Theorem 7 4 1∕2 - - 39 2.55 s
512 177 196 Theorem 7 6 2∕3 - - 76 76.26 s

1024 328 391 Theorem 7 3 2∕3 - - 30 1.53 s
1024 336 391 Theorem 7 4 1∕2 - - 39 7.84 s
1024 353 391 Theorem 7 6 2∕3 - - 76 291.87 s

2048 656 782 Theorem 7 3 2∕3 - - 30 4.68 s
2048 672 782 Theorem 7 4 1∕2 - - 39 26.29 s
2048 693 782 Theorem 7 5 3∕5 - - 56 67.17 s
512 164 192 Theorem 8 - - 4 0 35 1.51 s
512 174 192 Theorem 8 - - 6 0 70 52.28 s
512 180 192 Theorem 8 - - 9 0 145 3096.38 s

1024 328 384 Theorem 8 - - 4 0 35 4.71 s
1024 348 384 Theorem 8 - - 6 0 70 163.83 s
1024 356 384 Theorem 8 - - 8 0 117 4499.55 s

2048 655 768 Theorem 8 - - 4 0 35 17.97 s
2048 696 768 Theorem 8 - - 6 0 70 626.35 s
2048 721 768 Theorem 8 - - 9 0 145 37171.04 s

Theorem 7 and Theorem 8. Therefore, we recommend using the factoring attack based on Theorem 7 for the most practical efficiency 
considerations. Furthermore, we provide the following example to aid in numerical understanding.

Example 1. We present a numerical example to illustrate the RSA-polynomial based semiprime factoring attack using Theorem 7. 
In this example, we set two prime numbers 𝑝 and 𝑞 to be 256 bits in length, indicating that 𝓁 = 256. Assuming that Algorithm 1 is 
executed with a significantly large value of 𝑠, resulting in a small value of 𝑥0 with bit-length of 69. The example instance is presented 
below.

𝑛 = 11869019022398882792869704924422803005755873694436907378545478090442472070037754∖

977349002601345404298679999666554479274642197886068349948490557567579778081,

𝑒0 = 3265922621583208002220893453194353450541585055549787640966395335905379852312,

𝑒1 = 78872095612590715012575827814521609326495744329831707458739093292802771023899,

𝑒2 = 107324303637634047210507829583176312810137947350445085346203763307935763010959.

We proceed by deriving the RSA-polynomial 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2) with the known parameters 𝑒0, 𝑒1, and 𝑒2. To 
conduct the proposed factoring attack using Theorem 7, we set 𝑘 = 1 and 𝑐 = 1 and hence construct a 12-dimensional lattice. After 
less than one second, we successfully extract the non-trivial root (𝑥0, 𝑦0) that satisfies the RSA-polynomial equation mentioned above. 
The obtained root is presented below.

𝑥0 = 322245836007467197621,

𝑦0 = 9806073087426374675.

Thus, we compute 𝑝 = 8𝑥0 + 𝑒2 and 𝑞 = 𝑒0 + 𝑒2 − 8(𝑥0 + 𝑦0) as follows.

𝑝 = 107324303637634047210507829583176312810137947350445085348781729995995500591927,

𝑞 = 110590226259217255212728723036370666260679532405994872984513743371081994284903.

It is easy to check that 𝑛 = 𝑝𝑞 does hold. Therefore, Theorem 7 is successfully applied to semiprime factorization using the RSA-

polynomial. Moreover, we confirm that it is possible for a polynomial-time malicious attacker to break RSA-polynomial based 
commitment scheme when committing a short message.

Interestingly, this numerical example can also be resolved using Theorem 8 with 𝑚 = 2 and 𝜏 = 0 (where the parameters even 
yield the same lattice basis matrix). The lattice construction details including the underlying lattice basis matrix are provided in 
Appendix A.3.

5. Conclusion

We have revisited the RSA-polynomial problem and its applications, aiming to provide a more thorough analysis. Specifically, 
11

we conducted a refined analysis of the unclear condition presented in [1, Theorem 5] and derived a precise attack condition by 
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incorporating several given parameters. Additionally, we proposed two optimized factoring attacks based on improved theorems 
that efficiently solve bivariate integer polynomials of a specific form. Our findings revealed previously unidentified weak cases of 
Problem 1 and expanded the vulnerable bound by an impressive 90% increment. To validate the efficacy of our proposed factoring 
attacks, we provided both theoretical analysis and experimental results.

Moreover, we highlighted certain deficiencies in the related applications, i.e., the RSA-polynomial based semiprime factorization 
and commitment scheme, as presented in [1]. To address these issues, we employed sharper lattice-based techniques to optimize 
RSA-polynomial based factoring attacks and enhance the RSA-polynomial based commitment scheme.
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Appendix A. Details on lattice constructions

The lattice constructions primarily revolve around obtaining basis vectors for a lattice basis matrix. These vectors stem from 
coefficient vectors of shift polynomials related to two monomial sets 𝑆 and 𝑀 . Here, we illustrate the process of generating shift 
polynomials and organizing coefficient vectors. Consequently, we can establish an upper triangular basis matrix for specific chosen 
parameters. It is worth noting that the lattice constructions for Theorem 4 and Theorem 5 are nearly identical except for monomial 
sets 𝑆 , 𝑀 and the definition of a crucial modulus 𝑅.

A.1. Lattice construction for Theorem 4

Suppose that the upper bounds 𝑋 and 𝑌 on 𝑥, 𝑦 along with the maximal norm 𝑊 are derived. We use the monomial sets 𝑆 and 
𝑀 presented in Theorem 4 with chosen 𝑘 and 𝑐 to generate shift polynomials.

𝑆 = {𝑥𝑖𝑦𝑗 ∶ 0 ≤ 𝑖 ≤ 𝑐𝑘+ 𝜆(𝑘− 𝑗), 0 ≤ 𝑗 ≤ 𝑘},

𝑀 = {𝑥𝑖𝑦𝑗 ∶ 0 ≤ 𝑖 ≤ 𝑐𝑘+ 𝛾𝑑 + 𝜆(𝑘+ 𝑑 − 𝑗), 0 ≤ 𝑗 ≤ 𝑘+ 𝑑}.

Before that, we require the constant term of 𝑓 (𝑥, 𝑦), i.e., 𝑐00 to be 1. Thus, we should define a modular polynomial 𝑓 (𝑥, 𝑦) = 𝑐−100 𝑓 (𝑥, 𝑦)
(mod 𝑅), where 𝑅 =𝑊𝑋(𝑐+𝜆)𝑘𝑌 𝑘. The shift polynomials 𝑔[𝑖,𝑗](𝑥, 𝑦) according to 𝑆 and 𝑀 are defined as follows:

𝑔[𝑖,𝑗](𝑥, 𝑦) ∶=
⎧⎪⎨⎪⎩

𝑥𝑖𝑦𝑗𝑓 ⋅𝑅
𝑊𝑋𝑖𝑌 𝑗

, 𝑥𝑖𝑦𝑗 ∈ 𝑆,

𝑥𝑖𝑦𝑗 ⋅𝑅, 𝑥𝑖𝑦𝑗 ∈𝑀 ⧵𝑆.

The coefficient vectors of 𝑔[𝑖,𝑗](𝑥𝑋, 𝑦𝑌 ) are used in the construction of lattice basis matrix.

We further specify the polynomial order ≺p (resp. the monomial order ≺m) related to the row order (resp. the column order) of 
the lattice basis matrix. The general principle is to place the polynomials 𝑔[𝑖,𝑗] (resp. the monomials 𝑥𝑖𝑦𝑗 ) regarding 𝑆 before those 
regarding 𝑀 ⧵𝑆 . The polynomial order ≺p is defined as 𝑔[𝑖,𝑗] ≺p 𝑔[𝑖′ ,𝑗′] if 𝑖 + 𝑗 < 𝑖′ + 𝑗′ or 𝑖 + 𝑗 = 𝑖′ + 𝑗′ with 𝑖 > 𝑗. The monomial order 
12

≺m is defined as 𝑥𝑖𝑦𝑗 ≺m 𝑥𝑖
′
𝑦𝑗

′
if 𝑖 + 𝑗 < 𝑖′ + 𝑗′ or 𝑖 + 𝑗 = 𝑖′ + 𝑗′ with 𝑖 > 𝑗. Assuming given 𝑓 (𝑥, 𝑦) = 𝑐20𝑥

2 + 𝑐11𝑥𝑦 + 𝑐10𝑥 + 𝑐01𝑦 + 1, 
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Table A.2

A toy example of lattice basis matrix for 𝑘 = 1, 𝑐 = 1, and 𝑓 (𝑥, 𝑦) = 𝑐20𝑥
2 + 𝑐11𝑥𝑦 + 𝑐10𝑥 + 𝑐01𝑦 + 1.

1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2 𝑥3 𝑥2𝑦 𝑥𝑦2 𝑥4 𝑥3𝑦 𝑥2𝑦2

𝑔[0,0] 𝑅∕𝑊 – – – –

𝑔[1,0] 𝑅∕𝑊 – – – –

𝑔[0,1] 𝑅∕𝑊 – – – –

𝑔[2,0] 𝑅∕𝑊 – – – –

𝑔[1,1] 𝑅∕𝑊 – – – –

𝑔[0,2] 𝑌 2𝑅

𝑔[3,0] 𝑋3𝑅

𝑔[2,1] 𝑋2𝑌 𝑅

𝑔[1,2] 𝑋𝑌 2𝑅

𝑔[4,0] 𝑋4𝑅

𝑔[3,1] 𝑋3𝑌 𝑅

𝑔[2,2] 𝑋2𝑌 2𝑅

Table A.3

A toy example of lattice basis matrix for 𝑚 = 2, 𝜏 = 0, and 𝑓 (𝑥, 𝑦) = 𝑐20𝑥
2 + 𝑐11𝑥𝑦 + 𝑐10𝑥 + 𝑐01𝑦 + 1.

1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2 𝑥3 𝑥2𝑦 𝑥𝑦2 𝑥4 𝑥3𝑦 𝑥2𝑦2

𝑔[0,0] 𝑅∕𝑊 – – – –

𝑔[1,0] 𝑅∕𝑊 – – – –

𝑔[0,1] 𝑅∕𝑊 – – – –

𝑔[2,0] 𝑅∕𝑊 – – – –

𝑔[1,1] 𝑅∕𝑊 – – – –

𝑔[0,2] 𝑌 2𝑅

𝑔[3,0] 𝑋3𝑅

𝑔[2,1] 𝑋2𝑌 𝑅

𝑔[1,2] 𝑋𝑌 2𝑅

𝑔[4,0] 𝑋4𝑅

𝑔[3,1] 𝑋3𝑌 𝑅

𝑔[2,2] 𝑋2𝑌 2𝑅

which implies 𝑑 = 𝛾 = 𝜆 = 1, we set 𝑘 = 1 and 𝑐 = 1. Table A.2 shows a toy example of lattice basis matrix, where symbols “–” denote 
the non-zero off-diagonal entries and other off-diagonal entries are 0.

A.2. Lattice construction for Theorem 5

Suppose that the upper bounds 𝑋 and 𝑌 on 𝑥, 𝑦 along with the maximal norm 𝑊 are derived. We use the monomial sets 𝑆 and 
𝑀 presented in Theorem 5 with chosen 𝑚 and 𝜏 to generate shift polynomials.

𝑆 = {𝑥𝑖𝑦𝑗 ∶ 0 ≤ 𝑖 ≤ 𝛾𝑑(𝑚− 1) + 𝜆(𝑑(𝑚− 1) − 𝑗) + 𝜏𝑑𝑚, 0 ≤ 𝑗 ≤ 𝑑(𝑚− 1)},

𝑀 = {𝑥𝑖𝑦𝑗 ∶ 0 ≤ 𝑖 ≤ 𝛾𝑑𝑚+ 𝜆(𝑑𝑚− 𝑗) + 𝜏𝑑𝑚, 0 ≤ 𝑗 ≤ 𝑑𝑚}.

Before that, we require the constant term of 𝑓 (𝑥, 𝑦), i.e., 𝑐00 to be 1. Thus, we should define a modular polynomial 𝑓 (𝑥, 𝑦) = 𝑐−100 𝑓 (𝑥, 𝑦)
(mod 𝑅), where 𝑅 =𝑊𝑋(𝛾+𝜆)𝑑(𝑚−1)+𝜏𝑑𝑚𝑌 𝑑(𝑚−1). The shift polynomials 𝑔[𝑖,𝑗](𝑥, 𝑦) according to 𝑆 and 𝑀 are defined as follows:

𝑔[𝑖,𝑗](𝑥, 𝑦) ∶=
⎧⎪⎨⎪⎩

𝑥𝑖𝑦𝑗𝑓 ⋅𝑅
𝑊𝑋𝑖𝑌 𝑗

, 𝑥𝑖𝑦𝑗 ∈ 𝑆,

𝑥𝑖𝑦𝑗 ⋅𝑅, 𝑥𝑖𝑦𝑗 ∈𝑀 ⧵𝑆.

The coefficient vectors of 𝑔[𝑖,𝑗](𝑥𝑋, 𝑦𝑌 ) are used in the construction of lattice basis matrix.

We further specify the polynomial order ≺p (resp. the monomial order ≺m) related to the row order (resp. the column order) of 
the lattice basis matrix. The general principle is to place the polynomials 𝑔[𝑖,𝑗] (resp. the monomials 𝑥𝑖𝑦𝑗 ) regarding 𝑆 before those 
regarding 𝑀 ⧵𝑆 . The polynomial order ≺p is defined as 𝑔[𝑖,𝑗] ≺p 𝑔[𝑖′ ,𝑗′] if 𝑖 + 𝑗 < 𝑖′ + 𝑗′ or 𝑖 + 𝑗 = 𝑖′ + 𝑗′ with 𝑖 > 𝑗. The monomial order 
≺m is defined as 𝑥𝑖𝑦𝑗 ≺m 𝑥𝑖

′
𝑦𝑗

′
if 𝑖 + 𝑗 < 𝑖′ + 𝑗′ or 𝑖 + 𝑗 = 𝑖′ + 𝑗′ with 𝑖 > 𝑗. Assuming given 𝑓 (𝑥, 𝑦) = 𝑐20𝑥

2 + 𝑐11𝑥𝑦 + 𝑐10𝑥 + 𝑐01𝑦 + 1, 
which implies 𝑑 = 𝛾 = 𝜆 = 1, we set 𝑚 = 2 and 𝜏 = 0. Table A.3 shows a toy example of lattice basis matrix, where symbols “–” denote 
the non-zero off-diagonal entries and other off-diagonal entries are 0.

One may observe that the above toy examples in Table A.2 and Table A.3 are identical. This arises from the fact that the respective 
monomial sets 𝑆 and 𝑀 exhibit surprising sameness when considering 𝑓 (𝑥, 𝑦) = 𝑐20𝑥

2 + 𝑐11𝑥𝑦 + 𝑐10𝑥 + 𝑐01𝑦 + 1, with parameters set 
13

to 𝑘 = 1, 𝑐 = 1 and 𝑚 = 2, 𝜏 = 0, respectively. However, it is important to note that in most cases, the lattice basis matrices differ.
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A.3. Lattice construction for numerical example

From Example 1, we obtain the RSA-polynomial 𝐹 (𝑥, 𝑦) = 8𝑥2 − 𝑒0𝑥 + 𝑒1 + 𝑦(8𝑥 + 𝑒2) with known parameters 𝑒0, 𝑒1, and 𝑒2. 
Additionally, we have 𝑋 = 𝑌 = 2𝜉 = 269 and 𝑊 = 2𝓁+𝜉 = 2325 since 𝓁 = 256 and 𝜉 = 69. Consequently, we compute 𝑅 =𝑊𝑋2𝑌 =
2532. Next, we derive 𝐹 (𝑥, 𝑦) = (𝑒1)−1𝐹 (𝑥, 𝑦) (mod 𝑅)2 with its constant term set to 1, as follows:

𝐹 (𝑥, 𝑦) = 1 +𝐶1𝑥+𝐶2𝑦+𝐶3𝑥
2 +𝐶4𝑥𝑦,

where 𝐶1 = −𝑒0 ⋅ (𝑒1)−1 (mod 𝑅), 𝐶2 = 𝑒2 ⋅ (𝑒1)−1 (mod 𝑅), and 𝐶3 = 𝐶4 = 8 ⋅ (𝑒1)−1 (mod 𝑅). The known parameters 𝑒0, 𝑒1, and 𝑒2
in Example 1 are listed below.

𝑒0 = 3265922621583208002220893453194353450541585055549787640966395335905379852312,

𝑒1 = 78872095612590715012575827814521609326495744329831707458739093292802771023899,

𝑒2 = 107324303637634047210507829583176312810137947350445085346203763307935763010959.

Therefore, we calculate 𝐶1, 𝐶2, 𝐶3, and 𝐶4 as follows:

𝐶1 = − 52213423640796030871270968090298481559491002713613922505193914160927154259992727∖

17274583907607994880163810976616302703305906703488254061779416556682994973691921∖

97004680988453290207893236663230817196128588529128490091371997673228865992,

𝐶2 = 17158304044780756582651733516193910736660551018973958409042427874440431810356382∖

07430991298617482606847351668693034635480025525566837788658543676343581903410742∖

7472620940581150662176973576901791503716636169917068641880872505193036781469,

𝐶3 = 𝐶4 = 12789874027201475394954162606875216966810441294227105540554276229044783916127579∖

68249276871978195408787521194857932206558173888961789864786850849937429443711128.

We follow the lattice construction detailed in Appendix A.1 and explicitly display two monomial sets 𝑆 and 𝑀 for 𝑘 = 𝑐 = 1.

𝑆 = {1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦}, 𝑀 = {1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, 𝑥3, 𝑥𝑦2, 𝑥2𝑦,𝑥4, 𝑥3𝑦,𝑥2𝑦2}.

Furthermore, we have 𝑀 ⧵ 𝑆 = {𝑦2, 𝑥3, 𝑥𝑦2, 𝑥2𝑦, 𝑥4, 𝑥3𝑦, 𝑥2𝑦2}. The shift polynomials 𝑔[𝑖,𝑗](𝑥, 𝑦) according to 𝑆 and 𝑀 are listed as 
follows:

𝑔[0,0](𝑥, 𝑦) ∶=
𝐹 ⋅𝑅
𝑊

,

𝑔[1,0](𝑥, 𝑦) ∶=
𝑥𝐹 ⋅𝑅
𝑊𝑋

,

𝑔[0,1](𝑥, 𝑦) ∶=
𝑦𝐹 ⋅𝑅
𝑊 𝑌

,

𝑔[2,0](𝑥, 𝑦) ∶=
𝑥2𝐹 ⋅𝑅
𝑊𝑋2𝑌

,

𝑔[1,1](𝑥, 𝑦) ∶=
𝑥𝑦𝐹 ⋅𝑅
𝑊𝑋𝑌

,

𝑔[0,2](𝑥, 𝑦) ∶=𝑦2 ⋅𝑅,

𝑔[3,0](𝑥, 𝑦) ∶=𝑥3 ⋅𝑅,

𝑔[2,1](𝑥, 𝑦) ∶=𝑥2𝑦 ⋅𝑅,

𝑔[1,2](𝑥, 𝑦) ∶=𝑥𝑦2 ⋅𝑅,

𝑔[4,0](𝑥, 𝑦) ∶=𝑥4 ⋅𝑅,

𝑔[3,1](𝑥, 𝑦) ∶=𝑥3𝑦 ⋅𝑅,

𝑔[2,2](𝑥, 𝑦) ∶=𝑥2𝑦2 ⋅𝑅.

The coefficient vectors of 𝑔[𝑖,𝑗](𝑥𝑋, 𝑦𝑌 ) in the above order are used to construct the lattice basis matrix. Table A.4 illustrates the 
lattice basis matrix of the given numerical example, where blank entries denote 0.
14

2 If (𝑒1)−1 (mod 𝑅) does not exist, we can gradually increase 𝑊 to make 𝑅 coprime to 𝑒1 .
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Table A.4

The lattice basis matrix of Example 1 for 𝐹 (𝑥, 𝑦) = 1 +𝐶1𝑥 +𝐶2𝑦 +𝐶3𝑥
2 +𝐶4𝑥𝑦.

1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2 𝑥3 𝑥2𝑦 𝑥𝑦2 𝑥4 𝑥3𝑦 𝑥2𝑦2

𝑅∕𝑊 𝐶1𝑋𝑅∕𝑊 𝐶2𝑌 𝑅∕𝑊 𝐶3𝑋
2𝑅∕𝑊 𝐶4𝑋𝑌𝑅∕𝑊

𝑅∕𝑊 𝐶1𝑋𝑅∕𝑊 𝐶2𝑌 𝑅∕𝑊 𝐶3𝑋
2𝑅∕𝑊 𝐶4𝑋𝑌𝑅∕𝑊

𝑅∕𝑊 𝐶1𝑋𝑅∕𝑊 𝐶2𝑌 𝑅∕𝑊 𝐶3𝑋
2𝑅∕𝑊 𝐶4𝑋𝑌𝑅∕𝑊

𝑅∕𝑊 𝐶1𝑋𝑅∕𝑊 𝐶2𝑌 𝑅∕𝑊 𝐶3𝑋
2𝑅∕𝑊 𝐶4𝑋𝑌𝑅∕𝑊

𝑅∕𝑊 𝐶1𝑋𝑅∕𝑊 𝐶2𝑌 𝑅∕𝑊 𝐶3𝑋
2𝑅∕𝑊 𝐶4𝑋𝑌𝑅∕𝑊

𝑌 2𝑅

𝑋3𝑅

𝑋2𝑌 𝑅

𝑋𝑌 2𝑅

𝑋4𝑅

𝑋3𝑌 𝑅

𝑋2𝑌 2𝑅
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